The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Ken'ichi YAMAGUCHI(3hit)

1-3hit
  • Formal Verification-Based Redundancy Identification of Transition Faults with Broadside Scan Tests

    Hiroshi IWATA  Nanami KATAYAMA  Ken'ichi YAMAGUCHI  

     
    PAPER-Formal techniques

      Pubricized:
    2017/03/07
      Vol:
    E100-D No:6
      Page(s):
    1182-1189

    In accordance with Moore's law, recent design issues include shortening of time-to-market and detection of delay faults. Several studies with respect to formal techniques have examined the first issue. Using the equivalence checking, it is possible to identify whether large circuits are equivalent or not in a practical time frame. With respect to the latter issue, it is difficult to achieve 100% fault efficiency even for transition faults in full scan designs. This study involved proposing a redundant transition fault identification method using equivalence checking. The main concept of the proposed algorithm involved combining the following two known techniques, 1. modeling of a transition fault as a stuck-at fault with temporal expansion and 2. detection of a stuck-at fault by using equivalence checking tools. The experimental results indicated that the proposed redundant identification method using a formal approach achieved 100% fault efficiency for all benchmark circuits in a practical time even if a commercial ATPG tool was unable to achieve 100% fault efficiency for several circuits.

  • Space-Optimal Population Protocols for Uniform Bipartition Under Global Fairness

    Hiroto YASUMI  Fukuhito OOSHITA  Ken'ichi YAMAGUCHI  Michiko INOUE  

     
    PAPER

      Pubricized:
    2018/10/30
      Vol:
    E102-D No:3
      Page(s):
    454-463

    In this paper, we consider a uniform bipartition problem in a population protocol model. The goal of the uniform bipartition problem is to divide a population into two groups of the same size. We study the problem under global fairness with various assumptions: 1) a population with or without a base station, 2) symmetric or asymmetric protocols, and 3) designated or arbitrary initial states. As a result, we completely clarify solvability of the uniform bipartition problem under global fairness and, if solvable, show the tight upper and lower bounds on the number of states.

  • Power-Constrained Test Synthesis and Scheduling Algorithms for Non-Scan BIST-able RTL Data Paths

    Zhiqiang YOU  Ken'ichi YAMAGUCHI  Michiko INOUE  Jacob SAVIR  Hideo FUJIWARA  

     
    PAPER-Dependable Computing

      Vol:
    E88-D No:8
      Page(s):
    1940-1947

    This paper proposes two power-constrained test synthesis schemes and scheduling algorithms, under non-scan BIST, for RTL data paths. The first scheme uses boundary non-scan BIST, and can achieve low hardware overheads. The second scheme uses generic non-scan BIST, and can offer some tradeoffs between hardware overhead, test application time and power dissipation. A designer can easily select an appropriate design parameter based on the desired tradeoff. Experimental results confirm the good performance and practicality of our new approaches.