1-3hit |
Koh JOHGUCHI Kasuaki YOSHIOKA Ken TAKEUCHI
In this paper, we propose an optimum access method for a phase change memory (PCM) with NAND strings. A PCM with a block erase interface is proposed. The method, which has a SET block erase operation and fast RESET programming, is proposed since the SET operation causes a slow access time for conventional PCM;. From the results of measurement, the SET-ERASE operation is successfully completed while the RESET-ERASE operation is incomplete owing to serial connection. As a result, the block erase interface with the SET-ERASE and RESET program method realizes a 7.7 times faster write speed compared than a conventional RAM interface owing to the long SET time. We also give pass-transistor design guidelines for PCM with NAND strings. In addition, the write-capability and write-disturb problems are investigated. The ERASE operation for the proposed device structure can be realized with the same current as that for the SET operation of a single cell. For the pass transistor, about 4.4 times larger on-current is needed to carry out the RESET operation and to avoid the write-disturb problem than the minimum RESET current of a single cell. In this paper, the SET programming method is also verified for a conventional RAM interface. The experimental results show that the write-capability and write-disturb problems are negligible.
Koh JOHGUCHI Hans Jurgen MATTAUSCH Tetsushi KOIDE Tetsuo HIRONAKA
The presented unified data/instruction cache design uses multiple banks and features 4 ports, distributed crossbar, different word-length for data and instruction ports, interleaved cache-line words and synchronous access with hidden precharge. A 20.5 KByte storage capacity is integrated in 5-metal-layer CMOS logic technology with 200 nm minimum gate length and a 3.4 ns access-cycle time is achieved. The access bandwidth corresponds to 10 ports with standard word-length, while the cost in increased Si-area is only 25% in comparison to a 1-port cache.
Koh JOHGUCHI Toru EGAMI Kousuke MIYAJI Ken TAKEUCHI
This paper gives a write voltage and read reference current generator considering temperature characteristics for multi-level Ge2Sb2Te5-based phase change memories. Since the optimum SET and RESET voltages linearly changes by the temperature, the voltage supply circuit must track this characteristic. In addition, the measurement results show that the read current depends on both read temperature and the write temperature and has exponential dependence on the read temperature. Thus, the binning technique is applied for each read and write temperature regions. The proposed variable TC generator can achieve below ±0.5 LSB precision from the measured differential non-linearity and integral non-linearity. As a result, the temperature characteristics of both the linear write voltage and the exponential read current can be tracked with the proposed variation tolerant linear temperature coefficient current generator.