The search functionality is under construction.

Author Search Result

[Author] Hans Jurgen MATTAUSCH(20hit)

1-20hit
  • Prediction of Circuit-Performance Variations from Technology Variations for Reliable 100 nm SOC Circuit Design

    Norio SADACHIKA  Shu MIMURA  Akihiro YUMISAKI  Kou JOHGUCHI  Akihiro KAYA  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E94-C No:3
      Page(s):
    361-367

    The long-standing problem of predicting circuit performance variations without a huge number of statistical investigations is demonstrated to be solvable by a surface-potential-based MOSFET model. Direct connection of model parameters to physical device parameters reflecting process variations and the reduced number of model parameters are the enabling key model properties. It has been proven that the surface-potential-based model HiSIM2 is capable of reproducing measured I-V and its derivatives' variations with those of device/process related model parameters. When used to predict 51-stage ring oscillator frequency variation including both inter- and intra-chip variation, it reproduces measurements with shortened simulation time.

  • Area-Efficient Multi-Port SRAMs for On-Chip Data-Storage with High Random-Access Bandwidth and Large Storage Capacity

    Hans Jurgen MATTAUSCH  Koji KISHI  Takayuki GYOHTEN  

     
    PAPER-Integrated Electronics

      Vol:
    E84-C No:3
      Page(s):
    410-417

    The recent trend towards highly parallel on-chip data processing, as e.g. in single-chip processors with parallel execution capability of multiple instructions, leads to the requirement of on-chip data storage with high random-access bandwidth, parallel access capability and large capacity. The first two requirements call for the application of multi-ported memories. However, the conventional architecture, based on multi-port storage cells for each bit, cannot efficiently realize the large storage capacity, because cell area explodes due to a quadratic increase with port number (N). A promising method for obtaining area efficiency is to increase the size of the smallest unit with N-port capability, e.g. by introducing N-port capability on the level of blocks of 1-port cells and not for each cell. We report a quantitative analysis of this method for the SRAM case, which is based on design data in a 0.5 µm, 2-metal CMOS technology. Achievable area-reduction magnitudes in comparison to the conventional architecture are found to be enormous and to accelerate as a function of N. Reduction factors to areas < 1/2, < 1/5, < 1/14 and < 1/30 are estimated for 4, 8, 16 and 32 ports, respectively. Since the demerit of the proposed approach is an increased access-rejection probability, a trade-off between area reduction and allowable access-rejection probability is always necessary for practical applications. This is discussed for the application of multi-port cache memories.

  • Realization of K-Nearest-Matches Search Capability in Fully-Parallel Associative Memories

    Md. Anwarul ABEDIN  Yuki TANAKA  Ali AHMADI  Shogo SAKAKIBARA  Tetsushi KOIDE  Hans Jurgen MATTAUSCH  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E90-A No:6
      Page(s):
    1240-1243

    The realization of k-nearest-matches search capability in fully-parallel mixed digital-analog associative memories by a sequential autonomous search mode is reported. The proposed concept and circuit implementation can be applied with all types of distance measures such as Hamming, Manhattan or Euclidean distance search, and the k value can be freely selected during operation. A test chip for concept verification has been designed in 0.35 µm CMOS technology with two-poly, three-metal layers, realizes k-nearest-matches Euclidean distance search and consumes 5.12 mm2 of the chip area for 64 reference patterns each with 16 units of 5-bit.

  • Non-Quasi-Static Carrier Dynamics of MOSFETs under Low-Voltage Operation

    Masataka MIYAKE  Daisuke HORI  Norio SADACHIKA  Uwe FELDMANN  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  Takahiro IIZUKA  Kazuya MATSUZAWA  Yasuyuki SAHARA  Teruhiko HOSHIDA  Toshiro TSUKADA  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    608-615

    We analyze the carrier dynamics in MOSFETs under low-voltage operation. For this purpose the displacement (charging/discharging) current, induced during switching operations is studied experimentally and theoretically for a 90 nm CMOS technology. It is found that the experimental transient characteristics can only be well reproduced in the circuit simulation of low voltage applications by considering the carrier-transit delay in the compact MOSFET model. Long carrier transit delay under the low voltage switching-on operation results in long duration of the displacement current flow. On the other hand, the switching-off characteristics are independent of the bias condition.

  • A Reliability-Enhanced TCAM Architecture with Associated Embedded DRAM and ECC

    Hideyuki NODA  Katsumi DOSAKA  Hans Jurgen MATTAUSCH  Tetsushi KOIDE  Fukashi MORISHITA  Kazutami ARIMOTO  

     
    PAPER

      Vol:
    E89-C No:11
      Page(s):
    1612-1619

    This paper describes a novel TCAM architecture designed for enhancing the soft-error immunity. An associated embedded DRAM and ECC circuits are placed next to TCAM macro to implement a unique methodology of recovering upset bits due to soft errors. The proposed configuration allows an improvement of soft-error immunity by 6 orders of magnitude compared with the conventional TCAM. We also propose a novel testing methodology of the soft-error rate with a fast parallel multi-bit test. In addition, the proposed architecture resolves the critical problem of the look-up table maintenance of TCAM. The design techniques reported in this paper are especially attractive for realizing soft-error immune, high-performance TCAM chips.

  • 1/f-Noise Characteristics in 100 nm-MOSFETs and Its Modeling for Circuit Simulation

    Shizunori MATSUMOTO  Hiroaki UENO  Satoshi HOSOKAWA  Toshihiko KITAMURA  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  Tatsuya OHGURO  Shigetaka KUMASHIRO  Tetsuya YAMAGUCHI  Kyoji YAMASHITA  Noriaki NAKAYAMA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E88-C No:2
      Page(s):
    247-254

    A systematic experimental and modeling study is reported, which characterizes the low-frequency noise spectrum of 100 nm-MOSFETs accurately. Two kinds of measured spectra are observed: 1/f and non-1/f spectra. The non-1/f spectrum is analysed by forward and backward measurements with exchanged source and drain, and shown to be due to a randomly distributed inhomogeneity of the trap density along the channel and within the gate oxide. By averaging the spectra of identical MOSFETs on a wafer the measured non-1/f noise spectra reduce to a 1/f characteristics. On the basis of these measurement data a noise model for circuit simulation is developed, which reproduces the low-frequency noise spectrum with a single model parameter for all gate lengths and under any bias conditions.

  • A CAM-Based Signature-Matching Co-processor with Application-Driven Power-Reduction Features

    Kazunari INOUE  Hideyuki NODA  Kazutami ARIMOTO  Hans Jurgen MATTAUSCH  Tetsushi KOIDE  

     
    PAPER-Integrated Electronics

      Vol:
    E88-C No:6
      Page(s):
    1332-1342

    A signature-matching co-processor in 130 nm CMOS technology for application in the network-security field is presented. Two key search technologies, implemented with fully-parallel CAM-based search cores, enable the removal of misused packets from Giga-bit-per-second (G-bps) networks in real-time without disturbing the normal network traffic. The first technology is a thorough search through packet header as well as payload in byte-shifting manner and is capable of detecting viruses, even if they are hidden at an arbitrary position within the packet. A 1.125 Mbit ternary CAM, operated at the speed of 125 Mega-searches per second (M-sps), integrates the primary lookup table for thorough packet search. The second technology applies an additional relational search with programmable logical operations to detect recently appearing more complicated misused packets. A small 192-bit binary CAM operated at 31.25 M-sps is also included for this purpose. Power dissipation, being a major concern of CAM-based application-specific LSIs, is addressed in the light of the signature-matching application, which has a high probability of multiple matches and which doesn't require to mask individual bits of the search word. Consequently, two application-driven power-reduction methods are implemented, namely an improved pipelined search for efficiently reducing power even in the case of a large number of multiple matches, and a search-line encoding for cutting search-line related power dissipation. As a result the signature-matching co-processor features low power dissipation between 0.4 W and 1.1 W for the best case and the worst case search configurations, respectively.

  • 4-Port Unified Data/Instruction Cache Design with Distributed Crossbar and Interleaved Cache-Line Words

    Koh JOHGUCHI  Hans Jurgen MATTAUSCH  Tetsushi KOIDE  Tetsuo HIRONAKA  

     
    LETTER-Integrated Electronics

      Vol:
    E90-C No:11
      Page(s):
    2157-2160

    The presented unified data/instruction cache design uses multiple banks and features 4 ports, distributed crossbar, different word-length for data and instruction ports, interleaved cache-line words and synchronous access with hidden precharge. A 20.5 KByte storage capacity is integrated in 5-metal-layer CMOS logic technology with 200 nm minimum gate length and a 3.4 ns access-cycle time is achieved. The access bandwidth corresponds to 10 ports with standard word-length, while the cost in increased Si-area is only 25% in comparison to a 1-port cache.

  • Acceleration of DCT Processing with Massive-Parallel Memory-Embedded SIMD Matrix Processor

    Takeshi KUMAKI  Masakatsu ISHIZAKI  Tetsushi KOIDE  Hans Jurgen MATTAUSCH  Yasuto KURODA  Hideyuki NODA  Katsumi DOSAKA  Kazutami ARIMOTO  Kazunori SAITO  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E90-D No:8
      Page(s):
    1312-1315

    This paper reports an efficient Discrete Cosine Transform (DCT) processing method for images using a massive-parallel memory-embedded SIMD matrix processor. The matrix-processing engine has 2,048 2-bit processing elements, which are connected by a flexible switching network, and supports 2-bit 2,048-way bit-serial and word-parallel operations with a single command. For compatibility with this matrix-processing architecture, the conventional DCT algorithm has been improved in arithmetic order and the vertical/horizontal-space 1 Dimensional (1D)-DCT processing has been further developed. Evaluation results of the matrix-engine-based DCT processing show that the necessary clock cycles per image block can be reduced by 87% in comprison to a conventional DSP architecture. The determined performances in MOPS and MOPS/mm2 are factors 8 and 5.6 better than with a conventional DSP, respectively.

  • Real-Time Huffman Encoder with Pipelined CAM-Based Data Path and Code-Word-Table Optimizer

    Takeshi KUMAKI  Yasuto KURODA  Masakatsu ISHIZAKI  Tetsushi KOIDE  Hans Jurgen MATTAUSCH  Hideyuki NODA  Katsumi DOSAKA  Kazutami ARIMOTO  Kazunori SAITO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E90-D No:1
      Page(s):
    334-345

    This paper presents a novel optimized real-time Huffman encoder using a pipelined data path based on CAM technology and a parallel code-word-table optimizer. The exploitation of CAM technology enables fast parallel search of the code word table. At the same time, the code word table is optimized according to the frequency of received input symbols and is up-dated in real-time. Since these two functions work in parallel, the proposed architecture realizes fast parallel encoding and keeps a constantly high compression ratio. Evaluation results for the JPEG application show that the proposed architecture can achieve up to 28% smaller encoded picture sizes than the conventional architectures. The obtained encoding time can be reduced by 95% in comparison to a conventional SRAM-based architecture, which is suitable even for the latest end-user-devices requiring fast frame-rates. Furthermore, the proposed architecture provides the only encoder that can simultaneously realize small compressed data size and fast processing speed.

  • Degraded Frequency-Tuning Range and Oscillation Amplitude of LC-VCOs due to the Nonquasi-Static Effect in MOS Varactors

    Masataka MIYAKE  Daisuke HORI  Norio SADACHIKA  Uwe FELDMANN  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  Tatsuya OHGURO  Takahiro IIZUKA  Masahiko TAGUCHI  Shunsuke MIYAMOTO  

     
    PAPER

      Vol:
    E92-C No:6
      Page(s):
    777-784

    Frequency dependent properties of accumulation-mode MOS varactors, which are key elements in many RF circuits, are dominated by Non-Quasi-Static (NQS) effects in the carrier transport. The circuit performances containing MOS varactors can hardly be reproduced without considering the NQS effect in MOS-varactor models. For the LC-VCO circuit as an example it is verified that frequency-tuning range and oscillation amplitude can be overestimated by over 20% and more than a factor 2, respectively, without inclusion of the NQS effect.

  • Scalable FPGA/ASIC Implementation Architecture for Parallel Table-Lookup-Coding Using Multi-Ported Content Addressable Memory

    Takeshi KUMAKI  Yutaka KONO  Masakatsu ISHIZAKI  Tetsushi KOIDE  Hans Jurgen MATTAUSCH  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E90-D No:1
      Page(s):
    346-354

    This paper presents a scalable FPGA/ASIC implementation architecture for high-speed parallel table-lookup-coding using multi-ported content addressable memory, aiming at facilitating effective table-lookup-coding solutions. The multi-ported CAM adopts a Flexible Multi-ported Content Addressable Memory (FMCAM) technology, which represents an effective parallel processing architecture and was previously reported in [1]. To achieve a high-speed parallel table-lookup-coding solution, FMCAM is improved by additional schemes for a single search mode and counting value setting mode, so that it permits fast parallel table-lookup-coding operations. Evaluation results for Huffman encoding within the JPEG application show that a synthesized semi-custom ASIC implementation of the proposed architecture can already reduce the required clock-cycle number by 93% in comparison to a conventional DSP. Furthermore, the performance per area unit, measured in MOPS/mm2, can be improved by a factor of 3.8 in comparison to parallel operated DSPs. Consequently, the proposed architecture is very suitable for FPGA/ASIC implementation, and is a promising solution for small area integrated realization of real-time table-lookup-coding applications.

  • Boundary-Active-Only Adaptive Power-Reduction Scheme for Region-Growing Video-Segmentation

    Takashi MORIMOTO  Hidekazu ADACHI  Osamu KIRIYAMA  Tetsushi KOIDE  Hans Jurgen MATTAUSCH  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E89-D No:3
      Page(s):
    1299-1302

    This letter presents a boundary-active-only (BAO) power reduction technique for cell-network-based region-growing video segmentation. The key approach is an adaptive situation-dependent power switching of each network cell, namely only cells at the boundary of currently grown regions are activated, and all the other cells are kept in low-power stand-by mode. The effectiveness of the proposed technique is experimentally confirmed with CMOS test-chips having small-scale cell networks of up to 4133 cells, where an average of only 1.7% of the cells remains active after application of the proposed approach. About 85% power reduction is thus achievable without sacrificing real-time processing.

  • Circuit-Simulation Model of Cgd Changes in Small-Size MOSFETs Due to High Channel-Field Gradients

    Dondee NAVARRO  Hiroaki KAWANO  Kazuya HISAMITSU  Takatoshi YAMAOKA  Masayasu TANAKA  Hiroaki UENO  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  Shigetaka KUMASHIRO  Tetsuya YAMAGUCHI  Kyoji YAMASHITA  Noriaki NAKAYAMA  

     
    INVITED PAPER

      Vol:
    E86-C No:3
      Page(s):
    474-480

    Small-size MOSFETs are becoming core devices in RF applications because of improved high frequency characteristics. For reliable design of RF integrated circuits operating at the GHz range, accurate modeling of small-size MOSFET characteristics is indispensable. In MOSFETs with reduced gate length (Lg), the lateral field along the MOSFET channel is becoming more pronounced, causing short-channel effects. These effects should be included in the device modeling used for circuit simulation. In this work, we investigated the effects of the field gradient in the gate-drain capacitance (Cgd). 2-Dimensional (2D) simulations done with MEDICI show that the field gradient, as it influences the channel condition, induces a capacitance which is visible in the MOSFET saturation operation. Changes in Cgd is incorporated in the modeling by an induced capacitance approach. The new approach has been successfully implemented in the surface-potential based model HiSIM (Hiroshima-university STARC IGFET Model) and is capable of reproducing accurately the measured Cgd-Lg characteristics, which are particularly significant for pocket-implant technology. Results show that pocket-implantation introduces a steep potential increase near the drain region, which results to a shift of the Cgd transition region (from linear to saturation) to lower bias voltages. Cgd at saturation decreases with Lg due to steeper surface potential and increased impurity concentration effects at reduced Lg.

  • A Compact Model of the Pinch-off Region of 100 nm MOSFETs Based on the Surface-Potential

    Dondee NAVARRO  Takeshi MIZOGUCHI  Masami SUETAKE  Kazuya HISAMITSU  Hiroaki UENO  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  Shigetaka KUMASHIRO  Tetsuya YAMAGUCHI  Kyoji YAMASHITA  Noriaki NAKAYAMA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E88-C No:5
      Page(s):
    1079-1086

    We have developed a model for circuit-simulation which describes the MOSFET region from pinch-off to drain contact based on the surface potential. The model relates the surface-potential increase beyond the pinch-off point to the channel/drain junction profile by applying the Gauss law with the assumption that the lateral field is greater than the vertical one. Explicit equations for the lateral field and the pinch-off length are obtained, which take the potential increase in the drain overlap region into account. The model, as implemented into a circuit simulator, correctly reproduces measured channel conductance and overlap capacitance for 100 nm pocket-implant technologies as a function of bias condition and gate length.

  • Efficient Video-Picture Segmentation Algorithm for Cell-Network-Based Digital CMOS Implementation

    Takashi MORIMOTO  Yohmei HARADA  Tetsushi KOIDE  Hans Jurgen MATTAUSCH  

     
    LETTER-Image Processing, Image Pattern Recognition

      Vol:
    E87-D No:2
      Page(s):
    500-503

    We present a digital algorithm for gray-scale/color image segmentation of real-time video signals and a cell-network-based implementation architecture in conventional CMOS technology. Practical application in fully-integrated QVGA-size video-picture segmentation chips is estimated to become possible at the 90 nm technology node.

  • Integration Architecture of Content Addressable Memory and Massive-Parallel Memory-Embedded SIMD Matrix for Versatile Multimedia Processor

    Takeshi KUMAKI  Masakatsu ISHIZAKI  Tetsushi KOIDE  Hans Jurgen MATTAUSCH  Yasuto KURODA  Takayuki GYOHTEN  Hideyuki NODA  Katsumi DOSAKA  Kazutami ARIMOTO  Kazunori SAITO  

     
    PAPER

      Vol:
    E91-C No:9
      Page(s):
    1409-1418

    This paper presents an integration architecture of content addressable memory (CAM) and a massive-parallel memory-embedded SIMD matrix for constructing a versatile multimedia processor. The massive-parallel memory-embedded SIMD matrix has 2,048 2-bit processing elements, which are connected by a flexible switching network, and supports 2-bit 2,048-way bit-serial and word-parallel operations with a single command. The SIMD matrix architecture is verified to be a better way for processing the repeated arithmetic operation types in multimedia applications. The proposed architecture, reported in this paper, exploits in addition CAM technology and enables therefore fast pipelined table-lookup coding operations. Since both arithmetic and table-lookup operations execute extremely fast, the proposed novel architecture can realize consequently efficient and versatile multimedia data processing. Evaluation results of the proposed CAM-enhanced massive-parallel SIMD matrix processor for the example of the frequently used JPEG image-compression application show that the necessary clock cycle number can be reduced by 86% in comparison to a conventional mobile DSP architecture. The determined performances in Mpixel/mm2 are factors 3.3 and 4.4 better than with a CAM-less massive-parallel memory-embedded SIMD matrix processor and a conventional mobile DSP, respectively.

  • Software-Based Parallel Cryptographic Solution with Massive-Parallel Memory-Embedded SIMD Matrix Architecture for Data-Storage Systems

    Takeshi KUMAKI  Tetsushi KOIDE  Hans Jurgen MATTAUSCH  Masaharu TAGAMI  Masakatsu ISHIZAKI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E94-D No:9
      Page(s):
    1742-1754

    This paper presents a software-based parallel cryptographic solution with a massive-parallel memory-embedded SIMD matrix (MTX) for data-storage systems. MTX can have up to 2,048 2-bit processing elements, which are connected by a flexible switching network, and supports 2-bit 2,048-way bit-serial and word-parallel operations with a single command. Furthermore, a next-generation SIMD matrix called MX-2 has been developed by expanding processing-element capability of MTX from 2-bit to 4-bit processing. These SIMD matrix architectures are verified to be a better alternative for processing repeated-arithmetic and logical-operations in multimedia applications with low power consumption. Moreover, we have proposed combining Content Addressable Memory (CAM) technology with the massive-parallel memory-embedded SIMD matrix architecture to enable fast pipelined table-lookup coding. Since both arithmetic logical operation and table-lookup coding execute extremely fast on these architectures, efficient execution of encryption and decryption algorithms can be realized. Evaluation results of the CAM-less and CAM-enhanced massive-parallel SIMD matrix processor for the example of the Advanced Encryption Standard (AES), which is a widely-used cryptographic algorithm, show that a throughput of up to 2.19 Gbps becomes possible. This means that several standard data-storage transfer specifications, such as SD, CF (Compact Flash), USB (Universal Serial Bus) and SATA (Serial Advanced Technology Attachment) can be covered. Consequently, the massive-parallel SIMD matrix architecture is very suitable for private information protection in several data-storage media. A further advantage of the software based solution is the flexible update possibility of the implemented-cryptographic algorithm to a safer future algorithm. The massive-parallel memory-embedded SIMD matrix architecture (MTX and MX-2) is therefore a promising solution for integrated realization of real-time cryptographic algorithms with low power dissipation and small Si-area consumption.

  • Embedded Low-Power Dynamic TCAM Architecture with Transparently Scheduled Refresh

    Hideyuki NODA  Kazunari INOUE  Hans Jurgen MATTAUSCH  Tetsushi KOIDE  Katsumi DOSAKA  Kazutami ARIMOTO  Kazuyasu FUJISHIMA  Kenji ANAMI  Tsutomu YOSHIHARA  

     
    PAPER-Memory

      Vol:
    E88-C No:4
      Page(s):
    622-629

    This paper describes a dynamic TCAM architecture with planar complementary capacitors, transparently scheduled refresh (TSR), autonomous power management (APM) and address-input-free writing scheme. The complementary cell structure of the planar dynamic TCAM (PD-TCAM) allows small cell size of 4.79 µm2 in 130 nm CMOS technology, and realizes stable TCAM operation even with very small storage capacitance. Due to the TSR architecture, the PD-TCAM maintains functional compatibility with a conventional SRAM-based TCAM. The combined effects of the compact PD-TCAM array matrix and the APM technique result in up to 50% reduction of the total power consumption during search operation. In addition, an intelligent address-input-free writing scheme is also introduced to facilitate the PD-TCAM application for the user. Consequently the proposed architecture is quite attractive for realizing compact and low-power embedded TCAM macros for the design of system VLSI solutions in the field of networking applications.

  • Compact Modeling of Expansion Effects in LDMOS

    Takahiro IIZUKA  Takashi SAKUDA  Yasunori ORITSUKI  Akihiro TANAKA  Masataka MIYAKE  Hideyuki KIKUCHIHARA  Uwe FELDMANN  Hans Jurgen MATTAUSCH  Mitiko MIURA-MATTAUSCH  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E95-C No:11
      Page(s):
    1817-1823

    In LDMOS devices for high-voltage applications, there appears a notable fingerprint of current-voltage characteristics known as soft breakdown. Its mechanism is analyzed and modeled on LDMOS devices where a high resistive drift region exists. This analysis has revealed that the softness of breakdown, known as the expansion effect, withholding a run-away of current, is contributed by the flux of holes underneath the gate-overlap region originated by impact-ionization. The mechanism of the expansion effect is modeled and implemented into the compact model HiSIM_HV for circuit simulation. A good agreement between simulated characteristics and 2D-device simulation results is verified.