1-2hit |
Dondee NAVARRO Hiroaki KAWANO Kazuya HISAMITSU Takatoshi YAMAOKA Masayasu TANAKA Hiroaki UENO Mitiko MIURA-MATTAUSCH Hans Jurgen MATTAUSCH Shigetaka KUMASHIRO Tetsuya YAMAGUCHI Kyoji YAMASHITA Noriaki NAKAYAMA
Small-size MOSFETs are becoming core devices in RF applications because of improved high frequency characteristics. For reliable design of RF integrated circuits operating at the GHz range, accurate modeling of small-size MOSFET characteristics is indispensable. In MOSFETs with reduced gate length (Lg), the lateral field along the MOSFET channel is becoming more pronounced, causing short-channel effects. These effects should be included in the device modeling used for circuit simulation. In this work, we investigated the effects of the field gradient in the gate-drain capacitance (Cgd). 2-Dimensional (2D) simulations done with MEDICI show that the field gradient, as it influences the channel condition, induces a capacitance which is visible in the MOSFET saturation operation. Changes in Cgd is incorporated in the modeling by an induced capacitance approach. The new approach has been successfully implemented in the surface-potential based model HiSIM (Hiroshima-university STARC IGFET Model) and is capable of reproducing accurately the measured Cgd-Lg characteristics, which are particularly significant for pocket-implant technology. Results show that pocket-implantation introduces a steep potential increase near the drain region, which results to a shift of the Cgd transition region (from linear to saturation) to lower bias voltages. Cgd at saturation decreases with Lg due to steeper surface potential and increased impurity concentration effects at reduced Lg.
Dondee NAVARRO Takeshi MIZOGUCHI Masami SUETAKE Kazuya HISAMITSU Hiroaki UENO Mitiko MIURA-MATTAUSCH Hans Jurgen MATTAUSCH Shigetaka KUMASHIRO Tetsuya YAMAGUCHI Kyoji YAMASHITA Noriaki NAKAYAMA
We have developed a model for circuit-simulation which describes the MOSFET region from pinch-off to drain contact based on the surface potential. The model relates the surface-potential increase beyond the pinch-off point to the channel/drain junction profile by applying the Gauss law with the assumption that the lateral field is greater than the vertical one. Explicit equations for the lateral field and the pinch-off length are obtained, which take the potential increase in the drain overlap region into account. The model, as implemented into a circuit simulator, correctly reproduces measured channel conductance and overlap capacitance for 100 nm pocket-implant technologies as a function of bias condition and gate length.