The search functionality is under construction.

Author Search Result

[Author] Koji ERIGUCHI(2hit)

1-2hit
  • Evaluation of Plasma Damage to Gate Oxide

    Yukiharu URAOKA  Koji ERIGUCHI  Tokuhiko TAMAKI  Kazuhiko TSUJI  

     
    PAPER-Process Technology

      Vol:
    E77-C No:3
      Page(s):
    453-458

    Plasma damage to gate oxide is studied using the test structures with various length antennas. It is shown that the plasma damage to gate oxide can be monitored quantitatively by measuring charge to breakdown (QBD). From the QBD measurements, it is confirmed that the degradation occurs in the duration of over-etching but not in the duration of main etching. The breakdown spots in gate oxide are detected by a photon emission method. The breakdown are caused by plasma damage at the LOCOS edge. A LOCOS structure plays an important role for the degradation by the plasma damage.

  • Plasma-Induced Transconductance Degradation of nMOSFET with Thin Gate Oxide

    Koji ERIGUCHI  Masatoshi ARAI  Yukiharu URAOKA  Masafumi KUBOTA  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    261-266

    Degradation of metal-oxide-semiconductor field-effect transistors (MOSFETs) reliability such as the relative transconductance reduction by plasma exposure is evaluated. The linear region peak transconductance (gm) decreases with antenna ratio (exposed antenna area/gate area) due to the plasma-induced Si-SiO2 interface state generation. The Si-SiO2 interface-related gm reduction which is defined as (gm0gm)/gm, where gm0 is the initial value of gm, decreases as the gate oxide thickness decreases. It is also found that the decreasing amount of gm depends on the conduction current from the plasma. The correlation between the (gm0gm)/gm and the plasma-induced reduction of charge-to-breakdown of the gate oxide with a constant current stress (ΔQBD) is observed, and the result shows that the gm reduction of nMOSFET during the plasma process is severe to the plasma-induced damage compared with the gate oxide breakdown.