The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yukiharu URAOKA(6hit)

1-6hit
  • A New Technique for Evaluating Gate Oxide Reliability Using a Photon Emission Method

    Yukiharu URAOKA  Kazuhiko TSUJI  

     
    PAPER-Device Technology

      Vol:
    E76-C No:4
      Page(s):
    519-524

    A new technique for evaluating gate oxide reliability using photon emission method has been developed. This method enables the measurements of the initial breakdown characteristics, reliability testing and failure analysis consistently. From the experimental results, followings are clarified for the first time using this technique. Failure modes in the initial characteristics have close correlation to TDDB characteristics and both characteristics correspond to the location of breakdown spot. The results suggest measures to improve the reliability of gate oxide and the existance of new failure mechanism.

  • Reliability of Low Temperature Poly-Si GOLD (Gate-Overlapped LDD) Structure TFTs

    Tetsuo KAWAKITA  Hidehiro NAKAGAWA  Yukiharu URAOKA  Takashi FUYUKI  

     
    PAPER-Active Matrix Displays

      Vol:
    E85-C No:11
      Page(s):
    1854-1859

    Low-temperature poly-Si thin film transistor with gate-overlapped LDD (GOLD) structure was fabricated. Reliability was evaluated using electrical stress method comparing conventional LDD and single drain structures. As previous researchers have reported, we have confirmed that the degradation of ON current and the field effect mobility was very small compared to conventional LDD or non-LDD structures. We have analyzed the reliability of the GOLD TFT using two-dimensional device simulator. We have clarified that vertical negative field plays a dominant role for improving the reliability in the GOLD TFT. Impact ionization occurs far from the interface between the oxide and poly-silicon by the vertical negative field. GOLD structure is promising for the realization of system on panel.

  • A Two-Dimensional Analysis of Hot-Carrier Photoemission from LOCOS- and Trench-Isolated MOSFETs

    Takashi OHZONE  Hideyuki IWATA  Yukiharu URAOKA  Shinji ODANAKA  

     
    PAPER-Integrated Electronics

      Vol:
    E76-C No:11
      Page(s):
    1673-1682

    A two-dimensional photoemission analysis of hot-carrier effects in LOCOS- and trench-isolated CMOS devices with channel width ranging from 160 µm to 0.2 µm is described. Photoemission-intensity profiles can be measured in spatial resolution of 0.1 µm. Different photoemission characteristics are observed in n-MOSFETs depending on isolation technology; M-shaped photoemission-intensity profiles are observed as gate voltage becomes higher in trench-isolated ones, but scarcely measured in LOCOS-isolated ones. As for p-MOSFETs, similar characteristics are observed independent on isolation technology and slightly M-shaped profiles are observed at higher gate voltages. The recession of 0.1-0.2 µm in photoemission area from the gate electrode edge due to gate bias dependence of the pinch-off points of n--LDD drain is observed when gate voltage increases from 1 V to 6 V. Meanwhile the recession of the pinch-off points in p-MOSFETs is less than 0.1 µm even when gate voltage increases from 2 V to 8 V. A qualitative explanation for the experimental results is given for four kinds of MOSFETs in comparing each device structure near the isolation edge.

  • Plasma-Induced Transconductance Degradation of nMOSFET with Thin Gate Oxide

    Koji ERIGUCHI  Masatoshi ARAI  Yukiharu URAOKA  Masafumi KUBOTA  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    261-266

    Degradation of metal-oxide-semiconductor field-effect transistors (MOSFETs) reliability such as the relative transconductance reduction by plasma exposure is evaluated. The linear region peak transconductance (gm) decreases with antenna ratio (exposed antenna area/gate area) due to the plasma-induced Si-SiO2 interface state generation. The Si-SiO2 interface-related gm reduction which is defined as (gm0gm)/gm, where gm0 is the initial value of gm, decreases as the gate oxide thickness decreases. It is also found that the decreasing amount of gm depends on the conduction current from the plasma. The correlation between the (gm0gm)/gm and the plasma-induced reduction of charge-to-breakdown of the gate oxide with a constant current stress (ΔQBD) is observed, and the result shows that the gm reduction of nMOSFET during the plasma process is severe to the plasma-induced damage compared with the gate oxide breakdown.

  • Electrical Properties of Ba0.5Sr0.5Ta2O6 Thin Film Fabricated by Sol-Gel Method

    Li LU  Masahiro ECHIZEN  Takashi NISHIDA  Kiyoshi UCHIYAMA  Yukiharu URAOKA  

     
    PAPER

      Vol:
    E93-C No:10
      Page(s):
    1511-1515

    Ba0.5Sr0.5Ta2O6 (BSTA) thin film was successfully fabricated on a Pt/SiO2/TiO2/Si substrate using the Sol-Gel method. Fundamental electrical properties of the BSTA thin film were investigated using metal-insulator-metal (MIM) structure. No diffusion of ions, from the thin film or the substrate, is observed because of the using of MIM structure. The Root Mean Square roughness of 1.04 nm shows that thin film grew well on the substrate. The BSTA thin film shows a much higher dielectric constant of about 130 than conventional gate insulators and high-k materials that are currently used in Thin Film Transistors. Low leakage current density of about 10-8 A/cm2 was obtained at an applied electric field of 500 kV/cm. Schottky emission is the dominant conduction mechanism at applied electric fields lower than 500 kV/cm and Fowler-Nordheim tunneling is the dominant conduction mechanism at higher applied electric fields. The Schottky barrier height between the Pt electrode and the Ba0.5Sr0.5Ta2O6 thin film was estimated to be 0.75 eV.

  • Evaluation of Plasma Damage to Gate Oxide

    Yukiharu URAOKA  Koji ERIGUCHI  Tokuhiko TAMAKI  Kazuhiko TSUJI  

     
    PAPER-Process Technology

      Vol:
    E77-C No:3
      Page(s):
    453-458

    Plasma damage to gate oxide is studied using the test structures with various length antennas. It is shown that the plasma damage to gate oxide can be monitored quantitatively by measuring charge to breakdown (QBD). From the QBD measurements, it is confirmed that the degradation occurs in the duration of over-etching but not in the duration of main etching. The breakdown spots in gate oxide are detected by a photon emission method. The breakdown are caused by plasma damage at the LOCOS edge. A LOCOS structure plays an important role for the degradation by the plasma damage.