1-5hit |
Takashi OHZONE Hideyuki IWATA Yukiharu URAOKA Shinji ODANAKA
A two-dimensional photoemission analysis of hot-carrier effects in LOCOS- and trench-isolated CMOS devices with channel width ranging from 160 µm to 0.2 µm is described. Photoemission-intensity profiles can be measured in spatial resolution of 0.1 µm. Different photoemission characteristics are observed in n-MOSFETs depending on isolation technology; M-shaped photoemission-intensity profiles are observed as gate voltage becomes higher in trench-isolated ones, but scarcely measured in LOCOS-isolated ones. As for p-MOSFETs, similar characteristics are observed independent on isolation technology and slightly M-shaped profiles are observed at higher gate voltages. The recession of 0.1-0.2 µm in photoemission area from the gate electrode edge due to gate bias dependence of the pinch-off points of n--LDD drain is observed when gate voltage increases from 1 V to 6 V. Meanwhile the recession of the pinch-off points in p-MOSFETs is less than 0.1 µm even when gate voltage increases from 2 V to 8 V. A qualitative explanation for the experimental results is given for four kinds of MOSFETs in comparing each device structure near the isolation edge.
Kaori MORIYAMA Shinji ODANAKA Youhei ICHIKAWA
This paper describes the dynamic behavior of a trench capacitor dRAM cell, named the SCC (Surrounded high-Capacitor Cell). A transient three-dimensional simulation reveals the raising of the substrate potential and the leakage current in the low-to-high state operation. The simulation results are verified by the experimental data using a test device. The characterization of this phenomenon allows design consideration of the scaled SCC.
Toshihiro MATSUDA Mari FUNADA Takashi OHZONE Etsumasa KAMEDA Shinji ODANAKA Kyoji TAMASHITA Norio KOIKE Ken-ichiro TATSUUMA
A new test structure, which has a 0.5 µm line and space polysilicon pattern of which center is aligned on the MOSFET's gate center, is proposed for hot-carrier-induced photoemission analysis in subquarter micron devices. The photoemission-intensity profiles were measured using the photoemission microscope with a liquid N2 cooled CCD imager. We successfully measured a peak position of photoemission intensity from the center of MOSFET's gate with a spatial resolution sufficiently less than 24 nm at the microscope magnification of 1000. The test structure is useful to study the photoemission effects in semiconductor devices.
Shinji ODANAKA Akio MISAKA Kyoji YAMASHITA
A new design hierarchy in TCAD is discussed with emphasis on a design of IC interconnects and gate patterns. Two design methodologies for gate patterns at a CMOS cell level and multilevel interconnect scheme at a chip level are proposed. This approach generates the layout design rules of gate patterns, considering the fabrication process and pattern layout dependency, and allows a design of multilevel interconnect scheme at the initial phase of technology development.
Hideyuki IWATA Mitsuo YASUHIRA Shinji ODANAKA Takashi OHZONE
This paper presents the dynamics of heavy-ion induced latchup turn-on behavior in CMOS structures using a three-dimensional and transient device simulation. The three-dimensional effects of parasitic devices in a CMOS structure during latchup turn-on are discussed in detail when a heavy-ion strikes the CMOS structure. For different incident types, the dynamics of latchup turn-on behaviors are also simulated. Moreover, latchup immunities of the CMOS structure obtained by two- and three-dimensional calculations are compared for the different incident types. This result suggests that the rough relation between latchup immunity and heavy-ion incident energy can be estimated using a two-dimensional simulation.