1-2hit |
Xiayu LI Song JIA Limin LIU Yuan WANG
A novel hybrid latch based flip-flop scheme is introduced in this paper. A pulse generator is eliminated to simplify clock distribution and save power. It also achieves high speed by shortening the critical data path. In addition, it avoids output node glitches which exist in conventional hybrid latch based flip-flops. HSPICE simulation results revealed that the proposed PHLFF performs best among referenced schemes. It can reduce 47.5% power dissipation, 16.5% clock-to-output latency and 56.4% PDP, as compared to conventional HLFF.
Yang XIAO Limin LI Jiachao CHANG Kang WU Guang LIANG Jinpei YU
The combination of GPS measurements with the dynamic model via a Kalman filter or an extended Kalman filter, also known as GPS based reduced dynamic orbit determination (RDOD) techniques, have been widely used for accurate and real time navigation of satellites in low earth orbit (LEO). In previous studies, the GPS measurement noise variance is empirically taken as a constant, which is not reasonable because of insufficient prior information or dynamic environment. An improper estimate of the measurement noise may lead to poor performance or even divergence of the filter. In this letter, an adaptive extended Kalman filter (AEKF)-based approach using GPS dual-frequency pseudo-range measurements is presented, where the GPS pseudo-range measurement noise variance is adaptively estimated by the Carrier to Noise Ratio (C/N0) from the tracking loop of GPS receiver. The simulation results show that the proposed AEKF approach can achieve apparent improvements of the position accuracy and almost brings no extra computational burdens for satellite borne processor.