The search functionality is under construction.

Author Search Result

[Author] Ling-ge JIANG(23hit)

1-20hit(23hit)

  • Lattice-Reduction-Aided MMSE Tomlinson-Harashima Precoding for MIMO Systems

    Feng LIU  Ling-ge JIANG  Chen HE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1872-1875

    In this letter, a lattice-reduction-aided (LRA) minimum mean square error (MMSE) Tomlinson-Harashima precoding (THP) is proposed for multiple input multiple output (MIMO) systems. The extended channel is exploited to develop the LRA MMSE-THP based on the lattice reduction method. Simulation results show that the proposed scheme significantly outperforms the conventional MMSE THP and the LRA zero-forcing (ZF) THP and achieves full diversity order.

  • Performance Analysis of Cooperative Sensing in Cognitive Radio Networks

    Cheng-yu WU  Chen HE  Ling-ge JIANG  Yun-fei CHEN  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E97-A No:7
      Page(s):
    1646-1649

    In this letter, the k-out-of-n rule for cooperative sensing is considered. For a given n, we derive the optimal value of k that minimizes the total sensing error probability subject to the sensing accuracy, considering both the effective of sensing errors and the primary activities. According to the optimal k, we analyze the performance and compare with other schemes, which illustrate the effectiveness of the proposed scheme.

  • A Pre-Emptive Horizontal Channel Borrowing and Vertical Traffic Overflowing Channel Allocation Scheme for Overlay Networks

    Fang-ming ZHAO  Ling-ge JIANG  Chen HE  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E91-A No:6
      Page(s):
    1516-1528

    In this paper, a channel allocation scheme is studied for overlay wireless networks to optimize connection-level QoS. The contributions of our work are threefold. First, a channel allocation strategy using both horizontal channel borrowing and vertical traffic overflowing (HCB-VTO) is presented and analyzed. When all the channels in a given macro-cell are used, high-mobility real-time handoff requests can borrow channels from adjacent homogeneous cells. In case that the borrowing requests fail, handoff requests may also be overflowed to heterogeneous cells, if possible. Second, high-mobility real-time service is prioritized by allowing it to pre-empt channels currently used by other services. And third, to meet the high QoS requirements of some services and increase the utilization of radio resources, certain services can be transformed between real-time services and non-real-time services as necessary. Simulation results demonstrate that the proposed schemes can improve system performance.

  • A Sliding Window Method with Iterative Tuning for Channel Estimation of UWB Signals

    Dan WANG  Ling-ge JIANG  Chen HE  

     
    LETTER-Communication Theory and Signals

      Vol:
    E90-A No:9
      Page(s):
    2042-2046

    This letter proposes a sliding window method with iterative tuning for channel estimation of UWB signals. The iterative tuning scheme, which is based on multiple iterations of least mean square (LMS) algorithm, is utilized for modifying the output of the conventional sliding window channel estimator. By using this, the proposed method is more flexible due to the tradeoff between the processing time and accuracy, which makes it more suitable for practical UWB wireless communications. Simulations are also provided for demonstrating the validation of the proposed method.

  • Blind Channel Estimation in MIMO-OFDM Systems

    Wei BAI  Chen HE  Ling-ge JIANG  Hong-wen ZHU  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:9
      Page(s):
    1849-1853

    In this letter, we investigate the blind channel estimation in MIMO-OFDM systems based on the second-order statistics of the channel outputs only. We exploit the cyclostationarity induced by OFDM with cyclic prefix, establish the sufficient identifiability conditions, and develop a subspace algorithm. Finally, we demonstrate the validity of the algorithm by computer simulations.

  • MSE-Based Robust Precoder Design in Multicell Downlink Systems

    Cong-gai LI  Chen HE  Ling-ge JIANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:5
      Page(s):
    1017-1020

    To mitigate the inter-cell interference in multicell downlink systems, this letter consider the robust precoder design for multicell cooperation where the knowledge of channel state available at the base station is imperfect. Assuming that imperfect channel state information (CSI) can be exchanged among cells but with no data sharing, we investigate the worst-case performance optimization problem with bounded CSI error. Our objective is to minimize the weighted sum mean-square-error (MSE) subject to per-base-station power constraints. A distributed solution is obtained by reformulating the upper bound of MSE and exploiting the Lagrangian method for the optimal problem. Simulation results demonstrate that the proposed algorithm is robust to guarantee the worst-case sum rate performance and has lower computational complexity than the SINR-based design.

  • Permutation-Based Semi-Fragile Watermark Scheme

    Guo-rui FENG  Ling-ge JIANG  Chen HE  

     
    LETTER-Digital Signal Processing

      Vol:
    E88-A No:1
      Page(s):
    374-377

    Tamper proofing is a crucial problem in the watermarking application. Aiming at the credibility of multimedia, we present a semi-fragile watermark based on the image permutation. Watermarking detection is performed without resorting to the host image and it is only controlled by secrete keys, thus the whole scheme does not have certain security gaps. The simulation experiments show that it can survive the JPEG compression and effectively specify the region of the image that has been modified maliciously.

  • Geometrically Invariant Watermarking Based on Gravity Center

    Ke DING  Chen HE  Ling-ge JIANG  Hong-xia WANG  

     
    LETTER-Information Security

      Vol:
    E87-A No:2
      Page(s):
    513-515

    A novel geometrically invariant watermarking scheme based on gravity center is presented which treating the geometrically invariant gravity centers of host image and its supplement image as reference points. Thus watermark synchronization is obtained. Simulation results show the effectiveness of our scheme to the geometrical distortion including rotation and/or scaling.

  • Performance of Coherent Receivers for PCTH-Based UWB System with Diversiform Modulation Schemes

    Yun-rui GONG  Di HE  Chen HE  Ling-ge JIANG  

     
    PAPER-Communications and Sequences

      Vol:
    E91-A No:9
      Page(s):
    2489-2496

    The performances of a PCTH-based communication UWB system with diversiform modulation schemes are compared on the classic AWGN channel propagation and the realistic IEEE-UWB channel model. By employing different versions of modulation at the transmitters, the performances of an optimal receiver and a Rake receiver with various combining schemes are studied in this paper. The numerical results for several compared cases illustrate the tradeoff between transmitter diversity and receiver complexity. It is shown that the actual performance of the PAM-PCTH scheme can be better in both kinds of channel propagation. We also find that the PCTH-based UWB system with the Rake receiver has better performance than the conventional proposal for overcoming the multipath propagation effects in the UWB indoor environment.

  • On the Achievable Diversity Multiplexing Tradeoff for Dynamic and Static DF in the Two-Way Channel

    Ao ZHAN  Chen HE  Ling-ge JIANG  

     
    LETTER-Information Theory

      Vol:
    E94-A No:10
      Page(s):
    2063-2067

    In this letter, dynamic decode-and-forward (DDF) protocol and static decode-and-forward (SDF) protocol are considered in a two-way half-duplex fading system, where two sources are equipped with multiple antennas and a relay is equipped with a single antenna. Their closed-form expressions of diversity multiplexing tradeoff (DMT) are derived, respectively. From the results, DDF always outperforms SDF in terms of DMT, achieves DMT gain over nonorthogonal amplify-and-forward (NAF) in low spectral efficiency scenarios, but is inferior to NAF in high spectral efficiency scenarios.

  • A Robust Asymmetric Watermarking Scheme Using Multiple Public Watermarks

    Guo-fu GUI  Ling-ge JIANG  Chen HE  

     
    LETTER-Information Security

      Vol:
    E88-A No:7
      Page(s):
    2026-2029

    In recently proposed asymmetric watermarking schemes, the public detection is less robust than the private detection. To resolve this problem, a robust asymmetric watermarking scheme using the multiple detection watermarks for public detection is proposed in this letter. In this scheme, the private watermark used for embedding is constructed by secretly selecting the partial elements of those public watermarks. It provides the same robustness for the public and the private detections, and the robustness is demonstrated in the computer simulations.

  • Joint MMSE Vector Precoding Based on GMD Method for MIMO Systems

    Feng LIU  Ling-ge JIANG  Chen HE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:9
      Page(s):
    2617-2620

    We propose a geometric mean decomposition (GMD) based vector precoding (VP) for multiple input multiple output (MIMO) systems. Minimum mean square error (MMSE) criterion is used for the joint VP design. The application of GMD method eliminates the imbalance among subchannel gains and obtains a better perturbation vector than the conventional method. We then exploit the extended channel matrix for further performance improvement. Simulation results show the proposed schemes significantly outperform the existing VP schemes.

  • A Two-Stage Spectrum Sensing Scheme Based on Cyclostationarity in Cognitive Radio

    Ying-pei LIN  Chen HE  Ling-ge JIANG  Di HE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2681-2684

    A spectrum sensing scheme for cognitive radio that includes coarse and fine sensing stages based on cyclostationarity is proposed in this paper. The cyclostationary feature detection (CFD) based on a single cyclic frequency (SCF) is used in the coarse sensing stage and that based on multiple cyclic frequencies (MCF) is employed in the fine sensing stage. Whether the fine sensing stage is performed or not is decided by comparing the statistic constructed in the coarse sensing stage with two thresholds. Theoretical analyses and simulation results show that the proposed sensing scheme has superior sensing performance and needs shorter sensing time.

  • A Reduced Complexity Quantization Error Correction Method for Lattice Reduction Aided Vector Precoding

    Xuan GENG   Ling-ge JIANG  Chen HE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2525-2528

    A reduced complexity quantization error correction method for lattice reduction aided (LRA) vector precoding is proposed. For LRA vector precoding,Babai's approximation procedure can generate quantization errors leading to performance loss. Instead of making a list to correct all possible errors as is done in the existing scheme, we propose a novel method in which only a subset of all possible errors are corrected. The size of the subset is determined by the probability distribution of the number of actual errors. Thus, the computation complexity of our correction procedure is reduced with little performance loss compared with the existing correction scheme.

  • Orthogonal Transformation to Enhance the Security of the Still Image Watermarking System

    Guo-rui FENG  Ling-ge JIANG  Chen HE  

     
    LETTER-Digital Signal Processing

      Vol:
    E87-A No:4
      Page(s):
    949-951

    A watermarking system is secure as long as it satisfies Kerckhoffs principle according to the cryptography. In this letter, two novel techniques named the encrypted orthogonal transformation and its improved scheme as useful preprocessing methods are presented to apply to the watermarking field, which can enhance the security of the watermarking scheme. Compared to discrete cosine transform watermarking algorithms, this method has similar robustness but higher security.

  • Wavelet-Based Semi-Fragile Watermarking with Tamper Detection

    Ke DING  Chen HE  Ling-ge JIANG  Hong-xia WANG  

     
    LETTER-Information Security

      Vol:
    E88-A No:3
      Page(s):
    787-790

    In this letter, a novel wavelet-based semi-fragile watermarking scheme is presented which exploiting the time-frequency feature of discrete wavelet transform (DWT) and high sensitivity on initial value of chaotic map. We also analyze the robustness to mild modification and fragility to malicious attack of our scheme. Its application includes tamper detection, image verification and copyright protection of multimedia content. Simulation results show the scheme can detect and localize malicious attacks with high peak signal-to-noise ratio (PSNR), while tolerating certain degree of JPEG compression and channel additive white Gaussian noise (AWGN).

  • Pricing in Cognitive Radio Networks with Interference Cancellation

    Zheng-qiang WANG  Ling-ge JIANG  Chen HE  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:7
      Page(s):
    1671-1674

    This letter investigates price-based power control for cognitive radio networks (CRNs) with interference cancellation. The base station (BS) of the primary users (PUs) will admit secondary users (SUs) to access by pricing their interference power under the interference power constraint (IPC). We give the optimal price for BS to maximize its revenue and the optimal interference cancellation order to minimize the total transmit power of SUs. Simulation results show the effectiveness of the proposed pricing scheme.

  • On the Achievable Diversity Multiplexing Tradeoff for the Optimal Time Allocation in the Two-Way Channel

    Ao ZHAN  Chen HE  Ling-ge JIANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:9
      Page(s):
    2624-2628

    In a two-way half-duplex system where source nodes are equipped with multiple antennas and a relay with a single antenna, we study the diversity multiplexing tradeoff (DMT) achieved by orthogonal decode-and-forward (ODF), orthogonal amplify-and-forward (OAF), non-orthogonal decode-and-forward (NDF) and non-orthogonal amplify-and-forward (NAF), respectively. Their closed-form DMT are derived with given transmission time of each terminal, and optimized by allocating the transmission time. From these analyses, NDF achieves the best performance in terms of DMT in low spectral efficiency scenarios, while NAF outperforms other protocols in high spectral efficiency scenarios.

  • Analysis of the Energy-QoS Tradeoff for Contention-Based Wireless Sensor Networks with Synchronous Wakeup Patterns

    Jun LUO  Ling-ge JIANG  Chen HE  

     
    LETTER-Network

      Vol:
    E91-B No:8
      Page(s):
    2711-2715

    To conserve energy, periodic active/sleep dynamics is adopted in wireless sensor networks. At the same time, the QoS guarantees, such as packet delay, packet loss ratio and network throughput need to be satisfied. We develop a finite queuing model for sensor nodes and derive network performance for contention-based wireless sensor networks with synchronous wakeup patterns. Furthermore, the impact of active/sleep duty cycle, time scale and node buffer size on the tradeoff between energy efficiency and QoS guarantees is studied based on the model. Simulation results well match our analytical results and validate the accuracy of our model and approach.

  • Successive SLNR Precoding with GMD for Downlink Multi-User Multi-Stream MIMO Systems

    Xun-yong Zhang  Chen HE  Ling-ge JIANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E95-A No:9
      Page(s):
    1619-1622

    In this paper, we propose a successive signal-to-leakage-plus-noise ratio (SLNR) based precoding with geometric mean decomposition (GMD) for the downlink multi-user multiple-input multiple-output (MU-MIMO) systems. The known leakages are canceled at the transmit side, and SLNR is calculated with the unknown leakages. GMD is applied to cancel the known leakages, so the subchannels for each receiver have equal gain. We further improve the proposed precoding scheme by ordering users. Simulation results show that the proposed schemes have a considerable bit error rate (BER) improvement over the original SLNR scheme.

1-20hit(23hit)