The search functionality is under construction.

Author Search Result

[Author] Mayumi WATANABE(2hit)

1-2hit
  • A SOI Multi-VDD Dual-Port SRAM Macro for Serial Access Applications

    Nobutaro SHIBATA  Mayumi WATANABE  Takako ISHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E100-C No:11
      Page(s):
    1061-1068

    Multiport SRAMs are frequently installed in network and/or telecommunication VLSIs to implement smart functions. This paper presents a high speed and low-power dual-port (i.e., 1W+1R two-port) SRAM macro customized for serial access operations. To reduce the wasted power dissipation due to subthreshold leakage currents, the supply voltage for 10T memory cells is lowered to 1 V and a power switch is prepared for every 64 word drivers. The switch is activated with look-ahead decoder-segment activation logic, so there is no penalty when selecting a wordline. The data I/O circuitry with a new column-based configuration makes it possible to hide the bitline precharge operation with the sensing operation in the read cycle ahead of it; that is, we have successfully reduced the read latency by a half clock cycle, resulting in a pure two-stage pipeline. The SRAM macro installed in a 4K-entry × 33-bit FIFO memory, fabricated with a 0.3-µm fully-depleted-SOI CMOS process, achieved a 500-MHz operation in the typical conditions of 2- and 1-V power supplies, and 25°C. The power consumption during the standby time was less than 1.0 mW, and that at a practical operating frequency of 400 MHz was in a range of 47-57 mW, depending on the bit-stream data pattern.

  • A Low-Power Synchronous SRAM Macrocell with Latch-Type Fast Sense Circuits

    Nobutaro SHIBATA  Mayumi WATANABE  

     
    PAPER

      Vol:
    E78-C No:7
      Page(s):
    797-804

    Low-power circuit techniques for size-configurable SRAM macrocells with wide range of operating frequency are presented. Synchronous specification is employed to drastically reduce the power dissipation for low-frequency applications. Dynamic circuits applied to bitliness and sense circuits contribute to the reduction of power dissipation. To enhance the high-end limitation of operating frequency, a latch-type fast sense circuit and an accurate activation-timing control technique for size-configurable memory macrocells are proposed, and a special CMOS-level input buffer is devised to enable the minimum cycle time of fast synchronous memory macrocells to be evaluated with conventional LSI-test systems. A memory macrocell using these techniques was fabricated with 0.5-µm CMOS technology. Its power consumption strongly depends on the operating frequency, and at 3-MHz suitable for codeless telephone applications is less than 5% that of an asynchronous SRAM designed with full-static CMOS circuits. Its maximum operating frequency at 3.3-V in 100-MHz.