The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Takako ISHIHARA(4hit)

1-4hit
  • EB-Testing-Pad Method and its Evaluation by Actual Devices

    Norio KUJI  Takako ISHIHARA  Shigeru NAKAJIMA  

     
    PAPER-EB Tester

      Vol:
    E85-D No:10
      Page(s):
    1558-1563

    A practical EB-testing-pad method, that enables higher observability of multilevel wiring LSIs without any increase of chip size, has been evaluated by using actual 0.25-µm SIMOX/CMOS devices. First, an 80k-gate logic LSI with testing pads was developed, and it was proved that observability improves from 17% to 87%. Next, two kinds of gate-chain TEGs (test element groups), with and without testing pads was developed to investigate the influence of testing pads on gate delay. It was found that the circuit delay increase due to the pads is very small, less than 2.7%. It was also found that capacitances from neighboring wires will increase only by at most 3% due to the testing pads. Thus, the testing pad method has been proved to be extremely effective in improving observability without any overhead in design.

  • A SOI Cache-Tag Memory with Dual-Rail Wordline Scheme

    Nobutaro SHIBATA  Takako ISHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E99-C No:2
      Page(s):
    316-330

    Cache memories are the major application of high-speed SRAMs, and they are frequently installed in high performance logic VLSIs including microprocessors. This paper presents a 4-way set-associative, SOI cache-tag memory. To obtain higher operating speed with less power dissipation, we devised an I/O-separated memory cell with a dual-rail wordline, which is used to transmit complementary selection signals. The address decoding delay was shortened using CMOS dual-rail logic. To enhance the maximum operating frequency, bitline's recovery operations after writing data were eliminated using a memory array configuration without half-selected cells. Moreover, conventional, sensitive but slow differential amplifiers were successfully removed from the data I/O circuitry with a hierarchical bitline scheme. As regards the stored data management, we devised a new hardware-oriented LRU-data replacement algorithm on the basis of 6-bit directed graph. With the experimental results obtained with a test chip fabricated with a 0.25-µm CMOS/SIMOX process, the core of the cache-tag memory with a 1024-set configuration can achieve a 1.5-ns address access time under typical conditions of a 2-V power supply and 25°C. The power dissipation during standby was less than 14 µW, and that at the 500-MHz operation was 13-83 mW, depending on the bit-stream data pattern.

  • A New High-Density 10T CMOS Gate-Array Base Cell for Two-Port SRAM Applications

    Nobutaro SHIBATA  Yoshinori GOTOH  Takako ISHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E99-C No:6
      Page(s):
    717-726

    Two-port SRAMs are frequently installed in gate-array VLSIs to implement smart functions. This paper presents a new high-density 10T CMOS base cell for gate-array-based two-port SRAM applications. Using the single base cell alone, we can implement a two-port memory cell whose bitline contacts are shared with the memory cell adjacent to one of two dedicated sides, resulting in greatly reduced parasitic capacitance in bitlines. To throw light on the total performance derived from the base cell, a plain two-port SRAM macro was designed and fabricated with a 0.35-µm low cost, logic process. Each of two 10-bit power-saved address decoders was formed with 36% fewer base cells by employing complex gates and a subdecoder. The new sense amplifier with a complementary sensing scheme had a fine sensitivity of 35 mVpp, and so we successfully reduced the required read bitline signal from 250 to 70 mVpp. With the macro with 1024 memory cells per bitline, the address access time under typical conditions of a 2.5-V power supply and 25°C was 4.0 ns (equal to that obtained with full-custom style design) and the power consumption at 200-MHz simultaneous operations of two ports was 6.7 mW for an I/O-data width of 1 bit.

  • A SOI Multi-VDD Dual-Port SRAM Macro for Serial Access Applications

    Nobutaro SHIBATA  Mayumi WATANABE  Takako ISHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E100-C No:11
      Page(s):
    1061-1068

    Multiport SRAMs are frequently installed in network and/or telecommunication VLSIs to implement smart functions. This paper presents a high speed and low-power dual-port (i.e., 1W+1R two-port) SRAM macro customized for serial access operations. To reduce the wasted power dissipation due to subthreshold leakage currents, the supply voltage for 10T memory cells is lowered to 1 V and a power switch is prepared for every 64 word drivers. The switch is activated with look-ahead decoder-segment activation logic, so there is no penalty when selecting a wordline. The data I/O circuitry with a new column-based configuration makes it possible to hide the bitline precharge operation with the sensing operation in the read cycle ahead of it; that is, we have successfully reduced the read latency by a half clock cycle, resulting in a pure two-stage pipeline. The SRAM macro installed in a 4K-entry × 33-bit FIFO memory, fabricated with a 0.3-µm fully-depleted-SOI CMOS process, achieved a 500-MHz operation in the typical conditions of 2- and 1-V power supplies, and 25°C. The power consumption during the standby time was less than 1.0 mW, and that at a practical operating frequency of 400 MHz was in a range of 47-57 mW, depending on the bit-stream data pattern.