The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Norio KUJI(5hit)

1-5hit
  • EB-Testing-Pad Method and its Evaluation by Actual Devices

    Norio KUJI  Takako ISHIHARA  Shigeru NAKAJIMA  

     
    PAPER-EB Tester

      Vol:
    E85-D No:10
      Page(s):
    1558-1563

    A practical EB-testing-pad method, that enables higher observability of multilevel wiring LSIs without any increase of chip size, has been evaluated by using actual 0.25-µm SIMOX/CMOS devices. First, an 80k-gate logic LSI with testing pads was developed, and it was proved that observability improves from 17% to 87%. Next, two kinds of gate-chain TEGs (test element groups), with and without testing pads was developed to investigate the influence of testing pads on gate delay. It was found that the circuit delay increase due to the pads is very small, less than 2.7%. It was also found that capacitances from neighboring wires will increase only by at most 3% due to the testing pads. Thus, the testing pad method has been proved to be extremely effective in improving observability without any overhead in design.

  • Cone/Block Methods for Logic Simulation Time Reduction in E-Beam Guided-Probe Diagnosis

    Norio KUJI  Kazuhiro SHIRAKAWA  

     
    PAPER

      Vol:
    E77-C No:4
      Page(s):
    560-566

    Cone and Block methods that sharply reduce logic simulation time in E-beam guided-probe diagnosis are proposed. These methods are based on a primitive-cell-level tracing algorithm, which traces faulty-state cells one by one in the primitive-cell level. By executing logic simulations in these methods so that simulated responses are reported only for the small set of nodes in a tracing path and in the immediate vicinity, simulation CPU time is sharply reduced with state-of-the-art logic simulators such as the Verilog-XL. With the proposed methods, the total CPU time in a diagnostic process can be reduced to 1/700 that of a conventional method. Additionally, the total amount of simulation date also reduces to 1/40 of its original amount. These methods were applied to the guided-probe diagnosis of actual 110k-gate ASIC chips and it was verified that they could be diagnosed in under seven hours per device, which is practical. This technology will greatly contribute to shortening the turnaround time of ASIC development.

  • Guided-Probe Diagnosis of LSIs Containing Macrocells

    Norio KUJI  Tadao TAKEDA  

     
    PAPER-Beam Testing/Diagnosis

      Vol:
    E81-D No:7
      Page(s):
    731-737

    A novel method for the guided-probe diagnosis of high-performance LSIs containing macrocells, which have no internal netlist essential to the diagnosis, has been developed. In this method, the macrocell netlist is derived from its layout by extracting a leaf-cell-level netlist and is combined with the original one. Logic models for the leaf cells in the extracted netlist are also generated to obtain the logic-simulation data in the macrocells. The logic modeling is extended for application to memory macrocells, based on the idea that analog-behavior leaf cells in the memory macrocells are converted into logically equivalent circuits for logic simulation. Specifically, sense amplifiers and wired-or connections on bit lines are replaced with the corresponding logic-behavior models. The proposed method has been successfully applied to actual design data of LSIs containing macrocells, and it has been verified that it enables fault paths inside macrocells to be accurately traced and that the logic models give good timing resolution in the logic simulation. Using the proposed method, LSIs containing macrocells will be able to be diagnosed regardless of the macrocell types, without the need for a "golden" device, by an electron-beam guided probe system.

  • E-Beam Static Fault Imaging with a CAD Interface and Its Application to Marginal Fault Diagnosis

    Norio KUJI  Kiyoshi MATSUMOTO  

     
    PAPER

      Vol:
    E77-C No:4
      Page(s):
    552-559

    A new image-based diagnostic method is proposed for use with an E-beam tester. The method features a static fault imaging technique and a navigation map for fault tracing. Static Fault imaging with a dc E-beam enables the fast acquisition of images without any additional hardware. Then, guided by the navigation map derived from CAD data, marginal timing faults can be easily pinpointed. A statistical estimation of the average count of static fault images for various LSI circuits shows that the proposed method can diagnose marginal faults by observing less than thirty faulty images and that a faulty area can be localized with up to five times fewer observations than with the guided-probe method. The proposed method was applied to a 19k-gate CMOS-logic LSI circuit and a marginal timing fault was successfully located.

  • Improvement of E-Beam Observability by Testing-Pad Placement in LSI Design Layout

    Norio KUJI  Tadao TAKEDA  

     
    PAPER-Integrated Electronics

      Vol:
    E82-C No:2
      Page(s):
    387-392

    A novel testing-pad placement method has been developed to greatly improve E-beam observability for multi-level wiring LSIs. In the method, testing pads connecting a lower-metal-layer wire with a top-metal-layer electrode are positioned in the design layout, making removal of the insulator unnecessary. The method features i) pad placement in unoccupied areas in mask patterns to avoid increases in chip size, ii) minimized pad size through the use of stacked vias so that the pads can be placed on as many wire nodes as possible, iii) placement as far as possible from the nearby wires to avoid local field effects, and iv) allocation of one testing pad to one circuit node to minimize the number of testing pads. These measures give us a practical pad-placement method, that has little influence on LSI design. It was shown that the proposed method yielded a dramatic improvement of observability from 13-33% to 88-99% in actual layouts of 0.25-µm ASICs with 20k, 120k, and 390k gates. It was also found that local field effects from nearby wires are negligible for almost all the testing pads. This approach will enable the use of E-beam testing on LSIs made with 0.25-µm technology and the even more sophisticated process technologies to come.