The search functionality is under construction.

Author Search Result

[Author] Michio TAKIKAWA(5hit)

1-5hit
  • Design and Fabrication of a Metasurface for Bandwidth Enhancement of RCS Reduction Based on Scattering Cancellation Open Access

    Hiroshi SUENOBU  Shin-ichi YAMAMOTO  Michio TAKIKAWA  Naofumi YONEDA  

     
    PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-C No:4
      Page(s):
    91-97

    A method for bandwidth enhancement of radar cross section (RCS) reduction by metasurfaces was studied. Scattering cancellation is one of common methods for reducing RCS of target scatterers. It occurs when the wave scattered by the target scatterer and the wave scattered by the canceling scatterer are the same amplitude and opposite phase. Since bandwidth of scattering cancellation is usually narrow, we proposed the bandwidth enhancement method using metasurfaces, which can control the frequency dependence of the scattering phase. We designed and fabricated a metasurface composed of a patch array on a grounded dielectric substrate. Numerical and experimental evaluations confirmed that the metasurface enhances the bandwidth of 10dB RCS reduction by 52% bandwidth ratio of the metasurface from 34% bandwidth ratio of metallic cancelling scatterers.

  • One-Dimensional Electronic Beam-Scanning Center-Fed Imaging Reflector Antenna

    Michio TAKIKAWA  Izuru NAITO  Kei SUWA  Yoshio INASAWA  Yoshihiko KONISHI  

     
    PAPER-Antenna Technologies

      Vol:
    E97-C No:1
      Page(s):
    17-25

    We propose a new, compact, center-fed reflector antenna that is capable of one-dimensional electronic beam scanning. The reflector profile in the vertical section (beam-scanning) is set to an imaging reflector configuration, while the profile in the orthogonal horizontal section (non-beam-scanning) is set to a Cassegrain antenna configuration. The primary radiator is a one-dimensional phased array antenna. We choose a center-fed configuration in order to reduce the antenna size as much as possible, despite the fact that the increased blocking area from the primary radiator causes degradation in efficiency compared to the typical offset-type configuration. In the proposed configuration, beam scanning is limited to one dimension, but utilize a compact, center-fed configuration that maintains the features of an imaging reflector antenna. We present the antenna configuration and design method and show that results obtained from the prototype antenna verify the predicted performance.

  • Novel Beam-Scanning Center-Fed Imaging Reflector Antenna with Elliptical Aperture for Wide Area Observation

    Michio TAKIKAWA  Yoshio INASAWA  Hiroaki MIYASHITA  Izuru NAITO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E99-C No:9
      Page(s):
    1031-1038

    We investigate a phased array-fed dual reflector antenna applying one-dimensional beam-scanning of the center-fed type, using an elliptical aperture to provide wide area observation. The distinguishing feature of this antenna is its elliptical aperture shape, in which the aperture diameter differs between the forward satellite direction and the cross-section orthogonal to it. The shape in the plane of the forward satellite direction, which does not have a beam-scanning function, is a ring-focus Cassegrain antenna, and the shape in the plane orthogonal to that, which does have a beam-scanning function, is an imaging reflector antenna. This paper describes issues which arose during design of the elliptical aperture shape and how they were solved, and presents design results using elliptical aperture dimensions of 1600 mm × 600 mm, in which the beam width differs by more than two times in the orthogonal cross-section. The effectiveness of the antenna was verified by fabricating a prototype antenna based on the design results. Measurement results confirmed that an aperture efficiency of 50% or more could be achieved, and that a different beam width was obtained in the orthogonal plane in accordance with design values.

  • Novel Phased Array-Fed Dual-Reflector Antenna with Different Orthogonal Cross-Section by Imaging Reflector Antenna and Ring-Focus Cassegrain Antenna

    Michio TAKIKAWA  Yoshio INASAWA  Hiroaki MIYASHITA  Izuru NAITO  

     
    PAPER

      Vol:
    E98-C No:1
      Page(s):
    8-15

    We propose a novel phased array-fed dual-reflector antenna that reduces performance degradation caused by multiple reflection. The marked feature of the proposed configuration is that different reflector profiles are employed for the two orthogonal directions. The reflector profile in the beam-scanning section (vertical section) is set to an imaging reflector configuration, while the profile in the orthogonal non-beam-scanning section (horizontal section) is set to a ring-focus Cassegrain antenna configuration. In order to compare the proposed antenna with the conventional antenna in which multiple reflection was problematic, we designed a prototype antenna of the same size, and verified the validity of the proposed antenna. The results of the verification were that the gain in the designed central frequency increased by 0.4 dB, and the ripple of the gain frequency properties that was produced by multiple reflection was decreased by 1.1,dB. These results demonstrated the validity of the proposed antenna.

  • Simultaneous Optimal Design Method of Primary Radiator and Main Reflector for Shaped Beam Antennas

    Takashi TOMURA  Michio TAKIKAWA  Yoshio INASAWA  Hiroaki MIYASHITA  

     
    PAPER

      Vol:
    E100-B No:2
      Page(s):
    211-218

    Shaped beam reflector antennas are widely used because they can achieve a shaped beam even with a single primary feed. Because coverage shapes depend on service areas, optimum primary radiators and reflector shapes are determined by the service areas. In this paper, we propose a simultaneous optimal design method of the primary radiator and reflector for the shaped beam antenna. Particle swarm optimization and the conjugate gradient method are adopted to optimize the primary radiator and reflector. The design method is applied to Japan coverage to verify its effectiveness.