1-16hit |
Chi H.CHAN Chien Min LIN Leung TSANG Yiu Fung LEUNG
In this paper, we illustrate the analysis of microstrip structures with a large number of unknowns using the sparse-matrix/canonical grid method. This fast Fourier thansform (FFT) based iterative method reduces both CPU time and computer storage memory requirements. We employ the Mixed-Potential Integral Equation (MPIE) formulation in conjunction with the RWG triangular discretization. The required spatial-domain Green's functions are obtained efficiently and accurately using the Complex Image Method (CIM). The impedance matrix is decomposed into a sparse matrix which corresponds to near interactions and its complementary matrix which corresponds to far interactions among the subsectional current elements on the microstrip structures. During the iterative process, the near-interaction portion of the matrix -vector multiplication is computed directly as the conventional MPIE formulation. The far-interaction portion of the matrix-vector multiplication is computed indirectly using fast Fourier transforms (FFTs). This is achieved by a Taylor series expansion of the Green's function about the grid points of a uniformly-spaced canonical grid overlaying the triangular discretization.
This work presents two novel algorithms to prevent rollback propagation for independent checkpointing: an efficient adaptive independent checkpointing algorithm and an optimized adaptive independent checkpointing algorithm. The last opportunity strategy that yields a better performance than the conservation strategy is also employed to prevent useless checkpoints for both causal rewinding paths and non-causal rewinding paths. The two methods proposed herein are domino effect-free and require only a limited amount of control information. They also take less unnecessary adaptive checkpoints than other algorithms. Furthermore, experimental results indicate that the checkpoint overhead of our techniques is lower than that of the coordinated checkpointing and domino effect-free algorithms for service-providing applications.
Although the probabilistic model checking tool called PRISM has been applied in many communication systems, such as wireless local area network, Bluetooth, and ZigBee, the technique is not used in a controller area network (CAN). In this paper, we use PRISM to model the mechanism of priority messages for CAN because the mechanism has allowed CAN to become the leader in serial communication for automobile and industry control. Through modeling CAN, it is easy to analyze the characteristic of CAN for further improving the security and efficiency of automobiles. The Markov chain model helps us to model the behaviour of priority messages.
Distributed domino effect-free checkpointing techniques can be divided into two categories: coordinated and communication-induced checkpointing. The former is inappropriate for mobile computing systems because it either forces every mobile host to take a new checkpoint or blocks the underlying computation during the checkpointing process. The latter makes every mobile host take the checkpoint independently. However, each mobile host may need to store multiple local checkpoints in stable storage. This investigation presents a novel three level synchronous checkpointing algorithm that combines the advantages of above two methods for mobile computing systems. The algorithm utilizes pre-synchronization, quasi-synchronization, and post-synchronization techniques and has the following merits: (1) Consistent global checkpoints can be ensured. (2) No mobile host is blocked during checkpointing. (3) Only twice the checkpoint size is required. (4) Power consumption is low. (5) The disconnection problem of mobile hosts can be resolved. (6) Very few mobile hosts in doze mode are disturbed. (7) It is simple and easy to implement. The proposed algorithm's numerical results are also provided in this work for comparison. The comparison reveals that our algorithm outperforms other algorithms in terms of checkpoint overhead, maintained checkpoints, power consumption, and disturbed mobile hosts.
Kai-Yi CHIN Yen-Lin CHEN Jong-Shin CHEN Zeng-Wei HONG Jim-Min LIN
In our previous project, an XML-based authoring tool was provided for teachers to script multimedia teaching material with animated agents, and a stand-alone learning system was designed for students to display the material and interact with animated agents. We also provided evidence that the authoring tool and learning system in computer-assisted learning systems successfully enhances learning performance. The aim of this study is to continue the previous project, to develop a Web-based multimedia learning system that presents materials and an animated agent on a Web browser. The Web-based multimedia learning system can provide an opportunity for students to engage in independent learning or review of school course work. In order to demonstrate the efficiency of this learning system, it was applied to one elementary school. An experimental material, `Road Traffic Safety', was presented in two learning systems: a Web-based PowerPoint learning system and a Web-based multimedia learning system. The experiment was carried out in two classes that had a total of thirty-one 3rd-grade students. The results suggest that using our authoring tool in a Web-based learning system can improve learning, and in particular, enhance learners' problem-solving ability. Students with higher achievement on the post-test showed better comprehension in problem-solving questions. Furthermore, the feedback from the questionnaire surveys show students' learning interest can be fostered when an animated agent is integrated into multimedia teaching materials, and that students prefer to adopt the Web-based multimedia learning system for independent learning after school.
Juinn-Horng DENG Kuang-Min LIN Meng-Lin KU
A novel generalized side-information cancellation (GSIC) precoder is proposed for multiuser multi-input multi-output (MIMO) downlink systems with channel state information at the transmitter. The proposed transceiver involves the following stages. First, a minimum mean square error (MMSE) based channel inversion (MMSE-CI) technique is utilized to suppress multiuser broadcast interference. By using a GSIC technique, it can further reduce the residual multiuser interference and the noise induced by MMSE-CI preprocessing. Next, with a singular value decomposition method, the spatial stream interference of each user is suppressed by the pre-processing and post-processing eigenvector matrices. Finally, the proposed precoder can be extended to joint water filling and diagonal loading methods for performance enhancement. For the correlated MIMO channels, signal subspace and antenna selection methods, incorporating the proposed GSIC precoder, are further designed to maximize the sum rate performance. Simulation results show that the proposed GSIC precoder outperforms the conventional precoders. Besides, simulation results confirm that the proposed GSIC precoder with water filling, diagonal loading, and signal subspace techniques exhibits excellent performance.
Che-Wun CHIOU Chiou-Yng LEE An-Wen DENG Jim-Min LIN
Because fault-based attacks on cryptosystems have been proven effective, fault diagnosis and tolerance in cryptography have started a new surge of research and development activity in the field of applied cryptography. Without magnitude comparisons, the Montgomery multiplication algorithm is very attractive and popular for Elliptic Curve Cryptosystems. This paper will design a Montgomery multiplier array with a bit-parallel architecture in GF(2m) with concurrent error detection capability to protect it against fault-based attacks. The robust Montgomery multiplier array with concurrent error detection requires only about 0.2% extra space overhead (if m=512 is as an example) and requires four extra clock cycles compared to the original Montgomery multiplier array without concurrent error detection.
Chyi-Ren DOW Cheng-Min LIN Da-Wei FAN
To enhance throughput and reuse bandwidth, clustering techniques can effectively manage nodes in multi-hop wireless networks. However, in such networks, hidden terminal interference degrades the system performance and increases the average packet delay time. Therefore, this work presents novel two-level cluster-based code assignment techniques to resolve the hidden terminal problems. At the low level, five basic and an optimized intra-cluster code assignment schemes are developed to calculate the number of codes used in each cluster. At the high level, two inter-cluster code assignment schemes (coarse-grained and fine-grained controls) are proposed to obtain the minimal number of code sets. The merits of our schemes include low execution time, low probability of code re-assignment, and low overhead. Furthermore, the proposed schemes allow us to regionally update orthogonal codes when the topology varies. Experimental results demonstrate that the proposed schemes outperform conventional techniques. Among the five basic intra-cluster code assignment schemes, the ordering criteria of increasing number of one-hop neighbors is the best in terms of the number of orthogonal codes to avoid hidden terminal interference. The optimized intra-cluster code assignment scheme generally obtains fewer orthogonal codes than other schemes. For inter-cluster code assignment schemes, the coarse-grained control has a lower code allocation time. However, the fine-grained control requires fewer orthogonal codes.
IEEE 802.11ah is a specification being developed for sub-1GHz license-exempt operation and is intended to provide Low Power Wide Area (LPWA) communication services and support Internet of Things (IoT) features such as large-scale networks and extended transmission range. However, these features also make the 802.11ah networks highly susceptible to channel contention and hidden node problem (HNP). To address the problems, the 11ah Task Group proposed a Restricted Access Window (RAW) mechanism. It shows outstanding performance in alleviating channel contention, but its effect on solving HNP is unsatisfactory. In this paper, we propose a simple and effective hidden node grouping algorithm (HNGA) based on IEEE 802.11ah RAW. The algorithm collects hidden node information by taking advantage of the 802.11 association process and then performs two-stage uniform grouping to prevent hidden node collisions (HNCs). Performance of the proposed algorithm is evaluated in comparison with other existing schemes in a hidden node situation. The results show that our proposed algorithm eliminates most of hidden node pairs inside a RAW group with low overhead penalty, thereby improving the performance of the network. Moreover, the algorithm is immune to HNCs caused by cross slot boundary transmissions.
Control Area Network (CAN) development began in 1983 and continues today. The forecast for annual world production in 2008 is approximately 65-67 million vehicles with 10-15 CAN nodes per vehicle on average . Although the CAN network is successful in automobile and industry control because the network provides low cost, high reliability, and priority messages, a starvation problem exists in the network because the network is designed to use a fixed priority mechanism. This paper presents a priority inversion scheme, belonging to a dynamic priority mechanism to prevent the starvation problem. The proposed scheme uses one bit to separate all messages into two categories with/without inverted priority. An analysis model is also constructed in this paper. From the model, a message with inverted priority has a higher priority to be processed than messages without inverted priority so its mean waiting time is shorter than the others. Two cases with and without inversion are implemented in our experiments using a probabilistic model checking tool based on an automatic formal verification technique. Numerical results demonstrate that low-priority messages with priority inversion have better expression in the probability in a full queue state than others without inversion. However, our scheme is very simple and efficient and can be easily implemented at the chip level.
Cheng-Min LIN Shyi-Shiou WU Tse-Yi CHEN
Universal Plug and Play (UPnP) allows devices automatic discovery and control of services available in those devices connected to a Transmission Control Protocol/ Internet Protocol (TCP/IP) network. Although many products are designed using UPnP, little attention has been given to UPnP related to modeling and performance analysis. This paper uses a framework of Generalized Stochastic Petri Net (GSPN) to model and analyze the behavior of UPnP systems. The framework includes modeling UPnP, reachability decomposition, GSPN analysis, and reward assignment. Then, the Platform Independent Petri net Editor 2 (PIPE2) tool is used to model and evaluate the controllers in terms of power consumption, system utilization and network throughput. Through quantitative analysis, the steady states in the operation and notification stage dominate the system performance, and the control point is better than the device in power consumption but the device outperforms the control point in evaluating utilization. The framework and numerical results are useful to improve the quality of services provided in UPnP devices.
Cheng-Min LIN Jyh-Horng LIN Jen-Cheng CHIU
In a WSAN (Wireless Sensor and Actuator Network), most resources, including sensors and actuators, are designed for certain applications in a dedicated environment. Many researchers have proposed to use of gateways to infer and annotate heterogeneous data; however, such centralized methods produce a bottlenecking network and computation overhead on the gateways that causes longer response time in activity processing, worsening performance. This work proposes two distribution inference mechanisms: regionalized and sequential inference mechanisms to reduce the response time in activity processing. Finally, experimental results for the proposed inference mechanisms are presented, and it shows that our mechanisms outperform the traditional centralized inference mechanism.
The architecture of ZigBee networks focuses on developing low-cost, low-speed ubiquitous communication between devices. The ZigBee technique is based on IEEE 802.15.4, which specifies the physical layer and medium access control (MAC) for a low rate wireless personal area network (LR-WPAN). Currently, numerous wireless sensor networks have adapted the ZigBee open standard to develop various services to promote improved communication quality in our daily lives. The problem of system and network reliability in providing stable services has become more important because these services will be stopped if the system and network reliability is unstable. The ZigBee standard has three kinds of networks; star, tree and mesh. The paper models the ZigBee protocol stack from the physical layer to the application layer and analyzes these layer reliability and mean time to failure (MTTF). Channel resource usage, device role, network topology and application objects are used to evaluate reliability in the physical, medium access control, network, and application layers, respectively. In the star or tree networks, a series system and the reliability block diagram (RBD) technique can be used to solve their reliability problem. However, a division technology is applied here to overcome the problem because the network complexity is higher than that of the others. A mesh network using division technology is classified into several non-reducible series systems and edge parallel systems. Hence, the reliability of mesh networks is easily solved using series-parallel systems through our proposed scheme. The numerical results demonstrate that the reliability will increase for mesh networks when the number of edges in parallel systems increases while the reliability quickly drops when the number of edges and the number of nodes increase for all three networks. More use of resources is another factor impact on reliability decreasing. However, lower network reliability will occur due to network complexity, more resource usage and complex object relationship.
Ching-Ian SHIE Yi-Chyun CHIANG Jinq-Min LIN
This work presents a technique to enhance the performance of the conventional PMOS Colpitts VCO circuit. This technique is accomplished by adding an NMOS cross-coupled pair under the traditional differential Colpitts VCO to enhance the oscillator startup condition and its efficiency. The analytics also support this viewpoint and present a device- choosing method to optimize the output power and phase noise. This new VCO can also be applied to realize the QVCO circuit, because the coupling transistors can be placed in parallel, connecting with the transistors in the NMOS cross-coupled pair, to achieve the proper coupling between individual VCOs. To verify the proposed design concept, two prototypes, which are VCO and QVCO operated at 2.4 GHz and fabricated in CMOS 0.25-µm technology, are designed and tested. The measurement results show that the performance of VCO demonstrates a FOM of about 180 dBC/Hz, and the phase noise of QVCO is -116 dBc/Hz at the 1 MHz offset from oscillation frequency.
Weiye XU Min LIN Ying WANG Fei WANG
Based on imperfect channel state information (CSI), the energy efficiency (EE) of downlink distributed antenna systems (DASs) with multiple receive antennas is investigated assuming composite Rayleigh fading channels. A new EE is introduced which is defined as the ratio of the average transmission rate to the total consumed power. According to this definition, an optimal power allocation (PA) scheme is developed for maximizing EE in a DAS subject to the maximum transmit power constraint. It is shown that a PA solution for the constrained EE optimization does exist and is unique. A Newton method based practical iterative algorithm is presented to solve PA. To avoid the iterative calculation, a suboptimal PA scheme is derived by means of the Lambert function, which yields a closed-form PA. The developed schemes include the ones under perfect CSI as special cases, and only need the statistical CSI. Thus, they have low overhead and good robustness. Moreover, the theoretical EE under imperfect CSI is derived for performance evaluation, and the resulting closed-form EE expression is obtained. Simulation results indicate that the theoretical EE can match the corresponding simulated value well, and the developed suboptimal scheme has performance close to optimal one, but with lower complexity.
Interrupt service routines are a key technology for embedded systems. In this paper, we introduce the standard approach for using Generalized Stochastic Petri Nets (GSPNs) as a high-level model for generating CTMC Continuous-Time Markov Chains (CTMCs) and then use Markov Reward Models (MRMs) to compute the performance for embedded systems. This framework is employed to analyze two embedded controllers with low cost and high performance, ARM7 and Cortex-M3. Cortex-M3 is designed with a tail-chaining mechanism to improve the performance of ARM7 when a nested interrupt occurs on an embedded controller. The Platform Independent Petri net Editor 2 (PIPE2) tool is used to model and evaluate the controllers in terms of power consumption and interrupt overhead performance. Using numerical results, in spite of the power consumption or interrupt overhead, Cortex-M3 performs better than ARM7.