1-2hit |
Seiji OKAMOTO Kazushige YONENAGA Kengo HORIKOSHI Mitsuteru YOSHIDA Yutaka MIYAMOTO Masahito TOMIZAWA Takeshi OKAMOTO Hidemi NOGUCHI Jun-ichi ABE Junichiro MATSUI Hisao NAKASHIMA Yuichi AKIYAMA Takeshi HOSHIDA Hiroshi ONAKA Kenya SUGIHARA Soichiro KAMETANI Kazuo KUBO Takashi SUGIHARA
We describe a field experiment of flexible modulation format adaptation on a real-time 400Gbit/s/ch DSP-LSI. This real-time DSP-LSI features OSNR estimation, practical simplified back propagation, and high gain soft-decision forward error correction. With these techniques, we have successfully demonstrated modulation format allocation and transmission of 56-channel 400Gbit/s-2SC-PDM-16QAM and 200Gbit/s-2SC-PDM-QPSK signals in 216km and 3246km standard single mode fiber, respectively.
Mitsuteru YOSHIDA Kei SAKAGUCHI Kiyomichi ARAKI
In recent years, wireless communication technology has been studied intensively. In particular, MIMO which employs several transmit and receive antennas is a key technology for enhancing spectral efficiency. However, conventional MIMO architectures require some transceiver circuits for the sake of transmitting and receiving separate signals, which incurs the cost of one RF front-end per antenna. In addition to that, MIMO systems are assumed to be used in low spatial correlation environment between antennas. Since a short distance between each antenna causes high spatial correlation and coupling effect, it is difficult to miniaturize wireless terminals for mobile use. This paper shows a novel architecture which enables mobile terminals to be miniaturized and to work with a single RF front-end by means of adaptive analog beam-forming with parasitic antenna elements and antenna switching for spatial multiplexing. Furthermore, statistical analysis of the proposed architecture is also discussed in this paper.