The search functionality is under construction.

Author Search Result

[Author] Mo CHEN(5hit)

1-5hit
  • iCruiser: An Improved Approach for Concurrent Heap Buffer Overflow Monitoring

    Donghai TIAN  Xuanya LI  Mo CHEN  Changzhen HU  

     
    LETTER-Information Network

      Vol:
    E97-D No:3
      Page(s):
    601-605

    Heap buffer overflow has been extensively studied for many years, but it remains a severe threat to software security. Previous solutions suffer from limitations in that: 1) Some methods need to modify the target programs; 2) Most methods could impose considerable performance overhead. In this paper, we present iCruiser, an efficient heap buffer overflow monitoring system that uses the multi-core technology. Our system is compatible with existing programs, and it can detect the heap buffer overflows concurrently. Compared with the latest heap protection systems, our approach can achieves stronger security guarantees. Experiments show that iCruiser can detect heap buffer overflow attacks effectively with a little performance overhead.

  • Simulation of Metal Droplet Sputtering and Molten Pool on Copper Contact under Electric Arc

    Kai BO  Xue ZHOU  Guofu ZHAI  Mo CHEN  

     
    PAPER

      Vol:
    E101-C No:9
      Page(s):
    691-698

    The micro-mechanism of molten pool and metal droplet sputtering are significant to the material erosion caused by breaking or making arcs especially for high-power switching devices. In this paper, based on Navier-Stokes equations for incompressible viscous fluid and potential equation for electric field, a 2D axially symmetric simplified hydrodynamic model was built to describe the formation of the molten metal droplet sputtering and molten pool under arc spot near electrode region. The melting process was considered by the relationship between melting metal volumetric percentage and temperature, a free surface of liquid metal deformation was solved by coupling moving mesh and the automatic re-meshing. The simulated metal droplet sputtering and molten pool behaviors are presented by the temperature and velocity distribution sequences. The influence mechanism of pressure distribution and heat flux on the formation of molten pool and metal droplet sputtering has been analyzed according to the temperature distribution and sputtering angles. Based on the simulation results, we can distinguish two different models of the molten metal droplet sputtering process: edge ejection and center ejection. Moreover, a new explanation is proposed based on calculated results with arc spot pressure distribution in the form of both unimodal and bimodal. It shows that the arc spot pressure distribution plays an important role in the metal droplet ejected from molten pool, the angle of the molten jet drop can be decreased along with the increment of the arc spot pressure.

  • Efficient Shellcode Detection on Commodity Hardware

    Donghai TIAN  Mo CHEN  Changzhen HU  Xuanya LI  

     
    LETTER-Software System

      Vol:
    E96-D No:10
      Page(s):
    2272-2276

    As more and more software vulnerabilities are exposed, shellcode has become very popular in recent years. It is widely used by attackers to exploit vulnerabilities and then hijack program's execution. Previous solutions suffer from limitations in that: 1) Some methods based on static analysis may fail to detect the shellcode using obfuscation techniques. 2) Other methods based on dynamic analysis could impose considerable performance overhead. In this paper, we propose Lemo, an efficient shellcode detection system. Our system is compatible with commodity hardware and operating systems, which enables deployment. To improve the performance of our system, we make use of the multi-core technology. The experiments show that our system can detect shellcode efficiently.

  • Study on Arc Characteristics of a DC Bridge-type Contact in Air and Nitrogen at Different Pressure

    Xue ZHOU  Mo CHEN  Xinglei CUI  Guofu ZHAI  

     
    PAPER

      Vol:
    E97-C No:9
      Page(s):
    850-857

    High voltage DC contactors, for operation at voltage levels up to at least about 300,volts, find their increasing markets in applications such as electrical vehicles and aircrafts in which size and weight of cables are of extreme importance. The copper bridge-type contact, cooperated with magnetic field provided by permanent magnets and sealed in an arc chamber filled with high pressure gases, is a mainly used structure to interrupt the DC arc rapidly. Arc characteristic in different gases at different pressure varies greatly. This paper is focused on the arc characteristics of the bridge-type contact system when magnetic field is applied with nitrogen and gas at different pressure. The pressure of the gases varies from 1,atm to 2.5,atm. Arc characteristics, such as arc durations at different stages and arc motions in those gases are comparatively studied. The results are instructive for choosing the suitable arcing atmosphere in a DC bridge-type arc chamber of a contactor.

  • Comparisons on Arc Behavior and Contact Performance between Cu and Cu-Mo Alloys in a Bridge-Type Contact System

    Xue ZHOU  Mo CHEN  Guofu ZHAI  

     
    PAPER

      Vol:
    E98-C No:9
      Page(s):
    904-911

    Cu-Mo alloy carries forward not only high electrical conductivity and high thermal conductivity from Cu but also high hardness from Mo, which makes it a promising potential application in electrical contact fields. In this paper, arc characteristic and erosion characteristic of Cu-Mo contacts are studied with a bridge-type contact high speed break mechanism on DC270 V/200 A load condition. And in each experiment group, 2500 times break operations are carried out. During every break operation, a high-speed AD card is used to record voltage and current signal of the arc, a high-speed camera is applied to record arcing process, and the temperature of contacts and arc are acquired by thermocouple and spectrometer, respectively. The mass and contact resistance of contacts are measured before and after every group experiment. Besides, the photograph of contact surface is taken by SEM to help analyze the erosion characteristic. The comparison between Cu-Mo contacts and Cu contacts indicates that although Cu contacts have a better electrical conductivity and thermal conductivity, Cu-Mo contacts can decrease the temperature of arc to prevent thermal breakdown, and they are also harder to be ablated and have a longer life span.