The search functionality is under construction.

Author Search Result

[Author] Naoki SUEHIRO(21hit)

1-20hit(21hit)

  • Comparison of the Two Signal Design Methods in the CDMA Systems Using Complete Complementary Codes

    Tetsuya KOJIMA  Akiko FUJIWARA  Kenji YANO  Masahiro AONO  Naoki SUEHIRO  

     
    PAPER

      Vol:
    E89-A No:9
      Page(s):
    2299-2306

    Some signal design methods for the approximately synchronized CDMA systems based on complete complementary codes have been proposed. It has been shown that estimating the multipath channels and applying the convolution of the spread signals can increase both the information transmission rate and frequency usage efficiency. There are some variations of such signal design methods using complete complementary codes. The efficiency of the communication systems and information transmission rate depend upon the applied signal design method and the modulation scheme. In this paper, we consider two of these signal design methods. We analyze the bit error rate (BER) performances for both methods through some numerical simulations under the single cell scenario. Numerical results show the BER properties under some modulation schemes such as BPSK, QPSK and 16QAM. Some discussions on the relation between the BER performance and the information transmission rate are also included.

  • FOREWORD

    Pingzhi FAN and Naoki SUEHIRO  

     
    FOREWORD

      Vol:
    E93-A No:11
      Page(s):
    2200-2200
  • Complete Complementary Sequences of Different Length

    R.S. Raja DURAI  Naoki SUEHIRO  Chenggao HAN  

     
    PAPER-Coding Theory

      Vol:
    E90-A No:7
      Page(s):
    1428-1431

    The class of complete complementary sequences (of fixed length) have the ideal correlation properties and are good at increasing the channel usage efficiency but lacks in desirable sequence lengths. In spread spectrum communication systems, sequences having nice correlation properties are important in many ways such as in suppressing multi-user interference, for reliable initial synchronization and in separation of the multipath components. It would be even good if the sequences are easy to construct and have desirable lengths for the system under consideration. In this paper, M sets of sequences that constitute a complete complementary sequences with ith set containing N sequences of length Li each, i = 0, 1, ..., M - 1, is defined and a general method that constructs such a class of complete complementary sequences (of different lengths) is given. The proposed class of complete complementary sequences, constituted by sequence sets of different lengths, does not increase the data rates when short-length sequences are employed.

  • Formulation of the Verbal Thought Process Based on Generative Rules

    Naoki SUEHIRO  Hiroya FUJISAKI  

     
    PAPER-Artificial Intelligence

      Vol:
    E67-E No:1
      Page(s):
    26-32

    An assumption is made on the generative nature of the verbal thought process, based on an analogy between language use and verbal thought. A procedure is then presented for acquiring the set of generative rules from a given set of concept strings, leading to an efficient representation of verbal knowledge. The non-terminal symbols derived in the acquisition process are found to correspond to concepts and superordinate concepts in the human process of verbal thought. The validity of the formulation and the efficiency of knowledge representation is demonstrated by an example in which knowledge of biological properties of animals is reorganized into a set of generative rules. The process of inductive inference is then defined as a generalization of the acquired knowledge, and the principle of maximum simplicity of rules is proposed as a possible criterion for such generalization. The proposal is also tested by an example in which only a small part of a systematic body of knowledge is utilized to make inferences on the unknown parts of the system.

  • Expansion of Modulation for Modulatable Orthogonal Sequences

    Hideyuki TORII  Naoki SUEHIRO  

     
    PAPER

      Vol:
    E82-A No:12
      Page(s):
    2758-2764

    Frank and Zadaff had proposed a class of polyphase orthogonal sequences. Now the sequences are called "Frank sequences. " Suehiro has proposed a modulation method for Frank sequences. For example, the number of 4-phase orthogonal sequences of period 16 is 32 by Suehiro's method, on the other hand, the number of 4-phase Frank sequences of period 16 is 2. In this paper, the modulation method is expanded again and we prove that the sequences obtained by the proposed method are polyphase orthogonal sequences. Furhtermore, we prove that the number of N-phase orthogonal sequences of period N2 obtained by the proposed method is NN-2(N-1)!. As a result of the proposed expansion, the number of 4-phase orthogonal sequences of period 16 is 96.

  • Symmetrical Factorization of Bent Function Type Complex Hadamard Matrices

    Shinya MATSUFUJI  Naoki SUEHIRO  

     
    PAPER

      Vol:
    E82-A No:12
      Page(s):
    2765-2770

    This paper discusses factorization of bent function type complex Hadamard matrices of order pn with a prime p. It is shown that any bent function type complex Hadamard matrix has symmetrical factorization, which can be expressed by the product of n matrices of order pn with pn+1 non-zero elements, a matrix of order pn with pn non-zero ones, and the n matrices, at most. As its application, a correlator for M-ary spread spectrum communications is successfully given, which can be simply constructed by the same circuits with reduced multiplicators, before and behind.

  • A Quadriphase Sequence Pair Whose Aperiodic Auto/Cross-Correlation Functions Take Pure Imaginary Values

    Shinya MATSUFUJI  Naoki SUEHIRO  Noriyoshi KUROYANAGI  

     
    LETTER

      Vol:
    E82-A No:12
      Page(s):
    2771-2773

    This paper presents a quadriphase sequence pair, whose aperiodic auto-correlation functions for non-zero shifts and cross-one for any shift take pure imaginary values. Functions for pairs of length 2n are formulated, which map the vector space of order n over GF(2) to Z4. It is shown that they are bent for any n, such that their Fourier transforms take all the unit magnitude.

  • Adaptive CI-OSDM in Time-Frequency Selective Fading Channel

    Xiaoming TAO  Chao ZHANG  Jianhua LU  Naoki SUEHIRO  

     
    PAPER-Spread Spectrum Communications

      Vol:
    E91-A No:12
      Page(s):
    3712-3722

    Orthogonal Signal Division Multiplexing (OSDM), also known as SD-OFDM, has been proposed for information transmission with high spectrum efficiency. In this paper, a new signal construction method named Adaptive Carrier Interferometry OSDM (ACI-OSDM) is proposed for time-frequency selective fading channel. Particularly, the Adaptive CI codes originated from CI-OFDM are employed in the frequency domain of OSDM signal. Compared with traditional OFDM, the ACI-OSDM improves the performance considerably of broadband transmission, i.e., spectrum efficiency, Peak-to-Average Power Ratio (PAPR) mitigation and interference cancelation in the high speed mobile environment with multipath emission, e.g. super express train with speed more than 250 km/h.

  • A New Method for Constructing Modulatable Complete Complementary Codes

    Hideyuki TORII  Makoto NAKAMURA  Naoki SUEHIRO  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E86-A No:9
      Page(s):
    2388-2395

    Complete complementary codes have the property that the sum of correlation functions of several sequences satisfies both ideal autocorrelation and cross-correlation values. Modulatable complete complementary codes (MCC codes), which is a type of periodic complete complementary codes, are suitable for spreading sequences of M-ary CDMA systems. In the present paper, we propose a new method for constructing MCC codes. Using this method, we can easily generate various MCC codes.

  • Bounds on Aperiodic Autocorrelation and Crosscorrelation of Binary LCZ/ZCZ Sequences

    Daiyuan PENG  Pingzhi FAN  Naoki SUEHIRO  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E88-A No:12
      Page(s):
    3636-3644

    In order to eliminate the co-channel and multi-path interference of quasi-synchronous code division multiple access (QS-CDMA) systems, spreading sequences with low or zero correlation zone (LCZ or ZCZ) can be used. The significance of LCZ/ZCZ to QS-CDMA systems is that, even there are relative delays between the transmitted spreading sequences due to the inaccurate access synchronization and the multipath propagation, the orthogonality (or quasi-orthogonality) between the transmitted signals can still be maintained, as long as the relative delay does not exceed certain limit. In this paper, several lower bounds on the aperiodic autocorrelation and crosscorrelation of binary LCZ/ZCZ sequence set with respect to the family size, sequence length and the aperiodic low or zero correlation zone, are derived. The results show that the new bounds are tighter than previous bounds for the LCZ/ZCZ sequences.

  • Two Types of Polyphase Sequence Sets for Approximately Synchronized CDMA Systems

    Shinya MATSUFUJI  Noriyoshi KUROYANAGI  Naoki SUEHIRO  Pingzhi FAN  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E86-A No:1
      Page(s):
    229-234

    This paper discusses two types of polyphase sequence sets, which will successfully provide CDMA systems without co-channel interference. One is a type of ZCZ sets, whose periodic auto-correlation functions take zero at continuous shifts on both side of the zero-shift, and periodic cross-ones also take zero at the continuous shifts and the zero-shift. The other is a new type of sets consisting of some subsets of polyphase sequences with zero cross-correlation zone, called ZCCZ sets, whose periodic cross-correlation functions among different subsets have take zero at continuous shifts on both side of the zero-shift including the zero-shift. The former can achieve a mathematical bound, and the latter can have large size.

  • Novel Signal Separation Principle Based on DFT with Extended Frame Fourier Analysis

    Noriyoshi KUROYANAGI  Lili GUO  Naoki SUEHIRO  

     
    PAPER-Communication Theory

      Vol:
    E79-B No:2
      Page(s):
    182-190

    In general, a time-limited signal such as a single sinusoidal waveform framed by a frame period T can be utilized for conveying a multi-level symbol in data transmission. If such a signal is analyzed by the conventional DFT (Discrete Fourier Transform) analysis, the infinite number of frequency components with frequency spacing fD = T1 is needed. This limits the accuracy with which the original frequency of the unframed sinusoidal waverform can be identified. It is especially difficult to identify two similar framed sinusoids whose frequency spacing is narrower than fD. An analytical principle for time-limited signals is therefore proposed by introducing the concept of an Extended Frame into DFT. Waveform analysis more accurate than DFT is achieved by taking into account multiple correlations between extended frames made of an input frame signal and the element frequency components corresponding to the length of each extended frame. In this approach, it is possible to use arbitrary element frequency spacing less than fD. It also allows an element frequency to be selected as a real number times of fD, rather than as an integer times of fD that is used for DFT. With this analyzing mechanism, it is verified that an input frame signal with only the frequency components which coincide with any of the element frequencies can be exactly analyzed. The disturbance caused by the input white noise is examined. As a result, it is found that the superior noise suppression function is achieved by this method over a conventional matched filter. In addition, the error caused by using a finite number of element frequencies and the A/D conversion accuracy required for sampling an input signal are examined, and it is shown that these factors need not impede practical implementation. For this reason, this principle is useful for multi-ary transmission systems, noise tolerant receivers, or systems requiring precise filtering of time limited waveforms.

  • A New Construction Method of Zero-Correlation Zone Sequences Based on Complete Complementary Codes

    Chenggao HAN  Takeshi HASHIMOTO  Naoki SUEHIRO  

     
    PAPER-Sequence

      Vol:
    E91-A No:12
      Page(s):
    3698-3702

    In approximately synchronous CDMA (AS-CDMA) systems, zero correlation zone (ZCZ) sequences are known as the sequences to eliminate co-channel and multi-path interferences. Therefore, numerous constructions of zero correlation zone (ZCZ) sequences have been introduced e.g. based on perfect sequences and complete complementary codes etc. However, the previous construction method which based on complete complementary code is lacking for merit figures when none of whose elements are zero. In this paper, a new construction method of ZCZ sequences based on complete complementary codes is proposed. By proposed method, non zero elements ZCZ sequences whose merit figure is greater than 1/2 are constructable.

  • Elimination Filter for Co-Channel Interference in Asynchronous SSMA Systems Using Polyphase Modulatable Orthogonal Sequences

    Naoki SUEHIRO  

     
    PAPER

      Vol:
    E75-B No:6
      Page(s):
    494-498

    It is difficult for a receiver in Asynchronous SSMA systems to eliminate co-channel interference, when the receiver doesn't know the sequence of the co-channel interference. In this paper, a filter for eliminating co-channel interference without using the knowledge of the sequence of co-channel interference in an asynchronous SSMA system, in which each transmitter/receiver is assigned an infinite number of sequences and select a sequence secretly for information security. The filter gathers the co-channel interference energy into some puleses and scatters the signal energy widely. The receiver can clip the co-channel interference energy by losing small amount of signal energy. This is a new solution for the near-far problem in an asynchronous SSMA system using secret sequences.

  • New Classes of Optimal Variable-Weight Optical Orthogonal Codes with Hamming Weights 3 and 4

    Xiyang LI  Pingzhi FAN  Naoki SUEHIRO  Dianhua WU  

     
    PAPER-Sequences

      Vol:
    E95-A No:11
      Page(s):
    1843-1850

    Variable-weight optical orthogonal codes (OOCs) have application in multimedia optical code division multiple access (OCDMA) systems supporting multiple quality of services (QoS). In this paper, several combinatorial constructions for optimal variable-weight OOCs are presented explicitly. A useful recursive construction for optimal variable-weight OOCs is proposed as well. Based on these results, two new infinite classes of optimal variable-weight OOCs with Hamming weights 3 and 4 are obtained.

  • FOREWORD

    Pingzhi FAN  Naoki SUEHIRO  

     
    FOREWORD

      Vol:
    E91-A No:12
      Page(s):
    3663-3664
  • FOREWORD

    Naoki SUEHIRO  Pingzhi FAN  

     
    FOREWORD

      Vol:
    E89-A No:9
      Page(s):
    2245-2246
  • Logic Functions of Polyphase Complementary Sets

    Shinya MATSUFUJI  Sho KURODA  Yuta IDA  Takahiro MATSUMOTO  Naoki SUEHIRO  

     
    PAPER-Information Theory

      Pubricized:
    2023/09/05
      Vol:
    E106-A No:12
      Page(s):
    1475-1483

    A set consisting of K subsets of Msequences of length L is called a complementary sequence set expressed by A(L, K, M), if the sum of the out-of-phase aperiodic autocorrelation functions of the sequences within a subset and the sum of the cross-correlation functions between the corresponding sequences in any two subsets are zero at any phase shift. Suehiro et al. first proposed complementary set A(Nn, N, N) where N and n are positive integers greater than or equal to 2. Recently, several complementary sets related to Suehiro's construction, such as N being a power of a prime number, have been proposed. However, there is no discussion about their inclusion relation and properties of sequences. This paper rigorously formulates and investigates the (generalized) logic functions of the complementary sets by Suehiro et al. in order to understand its construction method and the properties of sequences. As a result, it is shown that there exists a case where the logic function is bent when n is even. This means that each series can be guaranteed to have pseudo-random properties to some extent. In other words, it means that the complementary set can be successfully applied to communication on fluctuating channels. The logic functions also allow simplification of sequence generators and their matched filters.

  • Construction of Sequences with Large Zero Correlation Zone

    Daiyuan PENG  Pingzhi FAN  Naoki SUEHIRO  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E88-A No:11
      Page(s):
    3256-3259

    In order to judge the goodness of zero correlation zone sequence sets, a new concept, called ZCZ characteristic, is proposed. Then by defining a sequence operation, i.e. correlation product, and establishing its basic properties, a new approach to construct sets of sequences with a large zero correlation zone is presented.

  • Ternary ZCZ Sequence Sets for Cellular CDMA Systems

    Kenji TAKATSUKASA  Shinya MATSUFUJI  Yoshiaki WATANABE  Noriyoshi KUROYANAGI  Naoki SUEHIRO  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E85-A No:9
      Page(s):
    2135-2140

    ZCZ sets are families of sequences, whose periodic auto/cross-correlation functions have zero correlation zone at the both side of the zero-shift. They can provide approximately synchronized CDMA systems without intra-cell interference for cellular mobile communications. This paper presents ternary ZCZ sets achieving a mathematical bound, and investigates the average interference parameters for the sets in order to evaluate inter-cell interference. It is shown that they can provide AS-CDMA systems with efficiency frequency usage.

1-20hit(21hit)