1-4hit |
Ayako A. HASEGAWA Mitsuaki AKIYAMA Naomi YAMASHITA Daisuke INOUE Tatsuya MORI
Although security and privacy technologies are incorporated into every device and service, the complexity of these concepts confuses non-expert users. Prior research has shown that non-expert users ask strangers for advice about digital media use online. In this study, to clarify the security and privacy concerns of non-expert users in their daily lives, we investigated security- and privacy-related question posts on a Question-and-Answer (Q&A) site for non-expert users. We conducted a thematic analysis of 445 question posts. We identified seven themes among the questions and found that users asked about cyberattacks the most, followed by authentication and security software. We also found that there was a strong demand for answers, especially for questions related to privacy abuse and account/device management. Our findings provide key insights into what non-experts are struggling with when it comes to privacy and security and will help service providers and researchers make improvements to address these concerns.
Keiji HIRATA Yasunori HARADA Toshihiro TAKADA Naomi YAMASHITA Shigemi AOYAGI Yoshinari SHIRAI Katsuhiko KAJI Junji YAMATO Kenji NAKAZAWA
We propose a 2D display and camera arrangement for video communication systems that supports both spatial information between distant sites and user mobility. The implementation of this arrangement is called the "surrounding back screen method." The method enables users to freely come from and go into other users' spaces and provides every user with the direct pointing capability, since there is no apparent spatial barrier separating users, unlike the case of conventional video communication systems. In this paper, we introduce two properties ("sharedness" and "exclusiveness") and three parameters (a distance and two angles) to represent the geometrical relationship between two users. These properties and parameters are used to classify the shared spaces created by a video communication system and to investigate the surrounding back screen method. Furthermore, to demonstrate and explore our surrounding back screen method, we have developed a prototype system, called t-Room. Taking into account practical situations, we studied a practical case where two t-Rooms with different layouts are connected.
Xun CAO Naomi YAMASHITA Toru ISHIDA
Previous research has shown that transcripts generated by automatic speech recognition (ASR) technologies can improve the listening comprehension of non-native speakers (NNSs). However, we still lack a detailed understanding of how ASR transcripts affect listening comprehension of NNSs. To explore this issue, we conducted two studies. The first study examined how the current presentation of ASR transcripts impacted NNSs' listening comprehension. 20 NNSs engaged in two listening tasks, each in different conditions: C1) audio only and C2) audio+ASR transcripts. The participants pressed a button whenever they encountered a comprehension problem, and explained each problem in the subsequent interviews. From our data analysis, we found that NNSs adopted different strategies when using the ASR transcripts; some followed the transcripts throughout the listening; some only checked them when necessary. NNSs also appeared to face difficulties following imperfect and slightly delayed transcripts while listening to speech - many reported difficulties concentrating on listening/reading or shifting between the two. The second study explored how different display methods of ASR transcripts affected NNSs' listening experiences. We focused on two display methods: 1) accuracy-oriented display which shows transcripts only after the completion of speech input analysis, and 2) speed-oriented display which shows the interim analysis results of speech input. We conducted a laboratory experiment with 22 NNSs who engaged in two listening tasks with ASR transcripts presented via the two display methods. We found that the more the NNSs paid attention to listening to the audio, the more they tended to prefer the speed-oriented transcripts, and vice versa. Mismatched transcripts were found to have negative effects on NNSs' listening comprehension. Our findings have implications for improving the presentation methods of ASR transcripts to more effectively support NNSs.
Naomi YAMASHITA Yuya OTA Faiz SALLEH Mani NAVANEETHAN Masaru SHIMOMURA Kenji MURAKAMI Hiroya IKEDA
With the aim of characterizing the thermal conductivity for nanometer-scale thermoelectric materials, we have constructed a new measurement system based on ac calorimetry. Analysis of the obtained data requires time-evolution of temperature distribution in nanometer-scale material under periodic heating. In this study, we made a simulation using a C#-program for time-dependent temperature distribution, based on 2-dimensional heat-diffusion equation including the influence of heat emission from material edges. The simulation was applied to AlN with millimeter-scale dimensions for confirming the validity and accuracy. The simulated thermal diffusivity for 10×75-mm2-area AlN was 1.3×10-4 m2/s, which was larger than the value set in the heat-diffusion equation. This overestimation was also observed in the experiment. Therefore, our simulation can reproduce the unsteady heat conduction and be used for analyzing the ac calorimetry experiment.