The search functionality is under construction.

Author Search Result

[Author] Noboru NOMURA(2hit)

1-2hit
  • New Technologies of KrF Excimer Laser Lithography System in 0.25 Micron Complex Circuit Patterns

    Masaru SASAGO  Takahiro MATSUO  Kazuhiro YAMASHITA  Masayuki ENDO  Kouji MATSUOKA  Taichi KOIZUMI  Akiko KATSUYAMA  Noboru NOMURA  

     
    PAPER-Process Technology

      Vol:
    E77-C No:3
      Page(s):
    416-424

    New critical-dimension controlling technique of off-axis illumination for aperiodic patterns has been developed. By means of arranging not-imaging additional pattern near 0.25 micron isolated patterns, the depth of focus of an isolated pattern was improved as well as the periodic patterns. Simulation and experimental results were verified on a 0.48 numerical-aperture, KrF excimer laser stepper. Using new deep-ultra-violet hardening technique for chemically amplified positive resist, the critical dimension loss of resist pattern was prevented. 0.25 micron design rule pattern was obtained with excellent mask linearity without critical-dimension-loss. The combination techniques are achieved quarter micron design rule complex circuit pattern layouts.

  • Quarter Micron KrF Excimer Laser Lithography

    Masaru SASAGO  Masayuki ENDO  Yoshiyuki TANI  Satoshi KOBAYASHI  Taichi KOIZUMI  Takahiro MATSUO  Kazuhiro YAMASHITA  Noboru NOMURA  

     
    PAPER-Process Technology

      Vol:
    E76-C No:4
      Page(s):
    582-587

    This paper describes the potential of KrF excimer laser lithography for the development and production of 64 M and 256 Mbit DRAMs on the basis of our recent developed results. Quarter micron KrF excimer laser lithography has been developed. A new chemically amplified positive resist realizes high stability and process compatibility for 0.25 micron line and space patterns and 0.35 micron contact hole patterns. This developed resist is characterized as the increase of dissolution characteristics in exposed areas, and hence means the high resolution is obtained. A multiple interference effect was greatly reduced by using our over coat film or anti-reflective coating. This over coat film has no intermixing to the resist and it is simultaneously removed when the resist is developed. This anti-reflective coating has low etch selectivity to the resist, and hence the over coat film is etched away when etching the substrate. The two major results indicate that the KrF excimer laser lithography is promising for the development of 256 MDRAMs.