The search functionality is under construction.

Author Search Result

[Author] Nobuaki SUGIURA(4hit)

1-4hit
  • Suitable Conditions for Connections through the Plated Through Hole of Printed Circuit Boards

    Hiroki OKA  Nobuaki SUGIURA  Kei-ichi YASUDA  

     
    PAPER-Components

      Vol:
    E78-C No:3
      Page(s):
    304-310

    B-ISDN telecommunication systems will require signal processing speeds up to 600 Mbps or more. We must therefore consider the affects of signal reflection, signal attenuation, time dalay, and so on when designing these systems. The higher the signal speed, the larger the electrical noise induced around the connector, especially in the plated through holes (PTHs) area. This paper presents the results of our investigation focused on connector mounting configurations in the signal transmission line, especially whether or not signals transmit through the PTH in a printed circuit board (PCB). How the signal reflection characteristics depend upon transmission line configurations are discussed and experimental results and simulation analyses for a transmission line system using a small miniature A-type (SMA) connector as an example are performed. It is suggested that designs for future high-speed signal transmission circuits take into account the PTH diameter and/or the PTH pitch conditions, values for which can be determined from simulation analysis.

  • Effect of Power and Ground Pin Assignment and Inner Layer Structure on Switching Noise

    Nobuaki SUGIURA  

     
    PAPER-Components

      Vol:
    E78-C No:5
      Page(s):
    574-579

    Reducing switching noise is a key point in increasing signal transmission capability. This noise is related to the pin assignment of connectors and the inner layer structure of the printed circuit board (PCB). This paper presents and evaluates experimental results on the relationships between pin assignment, the number of the signal outputs, and switching noise. It shows that calculated and experimental results agree well if we assume that the distribution of return current, causing switching noise in a connector, does not uniformly decrease with increases in the number of ground pins. We also assume that the effective number of ground pins is related to the number of signal pins even if there are more ground pins than there are signal pins.

  • Coaxial SMD Module Connector for High-Speed MCM

    Shinichi SASAKI  Tohru KISHIMOTO  Nobuaki SUGIURA  

     
    PAPER-Connectors: Optical and Conventional

      Vol:
    E77-C No:10
      Page(s):
    1575-1580

    This paper describes a trial coaxial surface mounted connector for PGA-type high-speed multichip modules (MCM). An MCM connector is needed to ensure testability and connection reliability of MCMs mounted on a printed circuit board. Our connector consists of a coaxial elements, a common ground housing made of conductive resin, and a ground contact spring plate. It has 68 signal contacts. We investigated the performance of this connector by experiment and simulation. Its insertion force is only about 53 gf per signal pin. The characteristic impedance is from 45.6 Ω to 61.4 Ω. The average resistance between two contacts is 28 mΩ with a deviation of less than plus or minus 5 mΩ. The insertion is -0.4 dB at 1.0 GHz. Crosstalk noise is less than 1.2%. This prototype connector can transmit pulses of up to 1.2 Gb/s, showing that it is applicable to high-speed MCMs.

  • Evaluation of Board-to-board High-speed Signal transmission Limit in a Rack System

    Nobuaki SUGIURA  Hiroki OKA  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E78-B No:4
      Page(s):
    591-596

    Board-to-board signal transmission in a rack system is affected by various types of noise. Signal transmission capability is evaluated on the basis of physical construction parameters and signal conditions, such as rise time and amplitude. This paper examines noise in a rack system and shows that the maximum single-ended transmission capability is 100Mbps when pin-type connectors are used with a signal/ground pin assignment ratio of 1/1.