The search functionality is under construction.

Author Search Result

[Author] Tohru KISHIMOTO(7hit)

1-7hit
  • Cooling Characteristics of Small Planar Packaging System Combined with Card-On-Board Packaging for High-Speed Telecommunication Systems

    Tohru KISHIMOTO  Yasuo KANEKO  

     
    PAPER-Components

      Vol:
    E81-C No:10
      Page(s):
    1639-1647

    The small planar packaging (SPP) system described here can be combined with card-on-board (COB) packaging in high-speed asynchronous transfer mode (ATM) switching systems with throughput of over 40-Gb/s. The SPP system provides high I/O pin count density, high packaging density and high cooling capability. Prototype SPP system with air flow control structure for switching MCMs is constructed. Each MCM contained a 35 array of low thermal resistance butt-lead pin-grid-array on a glass ceramic substrate measuring 100170 mm with a plate fin heat-sink. This allows a power dissipation of more than 125 W per MCM, and 300 W per printed circuit board (PCB). Obtained board level heat flux density of the SPP system is 0. 37 W/cm2, which is six times that of conventional COB packaging. The SPP system combined with the COB packaging provides a small system foot-print and compact hardware for high-speed, large capacity ATM switching systems. This high-performance air cooling technology will be especially useful for future broadband ISDN high-speed switching systems.

  • Small Planar Packaging System Combined with Card-On-Board Packaging for High-Speed, High-Density Switching Systems

    Tohru KISHIMOTO  Keiichi YASUNA  Hiroki OKA  Katsumi KAIZU  Sinichi SASAKI  Yasuo KANEKO  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E81-B No:10
      Page(s):
    1894-1902

    An innovative small planar packaging(SPP)system is described that can be combined with card-on-board(COB)packaging in high-speed asynchronous transfer mode switching systems with throughput of over 40-Gb/s. The SPP system provides high I/O pin count density and high packaging density, combining the advantages of both planar packaging used in computer systems and COB packaging used in telecommunication systems. Using a newly developed quasi-coaxial zero-insertion-force connector, point-to-point 311 Mb/s of 8-bit parallel signal transmission is achieved in an arbitrary location on the SPP systems shelf. Also about 5400 I/O connections in the region of the planar packaging system are made, thus the SPP system effectively eliminates the I/O pin count limitation. Furthermore, the heat flux management capability of the SPP system is five times higher than of conventional COB packaging because of its air flow control structure. An SPP system can easily enlarge the switch throughput and it will be useful for future high-speed, high-throughput ATM switching systems.

  • High-Density, High-Pin-Count Flexible SMD Connector for High-Speed Data Bus

    Shinichi SASAKI  Tohru KISHIMOTO  

     
    PAPER-Components

      Vol:
    E77-C No:10
      Page(s):
    1694-1701

    This paper describes a high-density, high-pin-count flexible SMD connector used for high-speed data buses between MCMs or daughter boards. This connector consists of a flexible film cable interconnection with accurately controlled characteristic impedance, and a contact housing composed of double-line contacts and SMD type leads. It has 98 contacts each with a pitch of 0.4 mm. The connector mounting area is 6 mm wide and 23 mm long. The flexible cable has a double-sided triple-parallel micro stripline structure with an insertion force of less than 2.9 kgf and characteristic impedance of 48 to 50 Ω. Insertion loss is -0.5 dB at 600 MHz and crosstalk noise is less than 110 mV at 250 ps rising time. This connector can be used for high-speed data transmission of up to 300 ps rising time.

  • Heat-Pipe Cooling Technology for High-Speed ATM Switching Multichip Modules

    Tohru KISHIMOTO  Shinichi SASAKI  Katsumi KAIZU  Kouichi GENDA  Kenichi ENDO  

     
    PAPER-Instrumentation and Control

      Vol:
    E78-C No:5
      Page(s):
    564-573

    This paper describes an innovative heat-pipe cooling technology for asynchronous transfer mode (ATM) switching multichip modules (MCMs) operating with a throughput of 40 Gb/s. Although high-speed ATM link-wires are connected at the top surface of the MCMs, there is no room to cool the MCM by forced air convection, because power and the system clock signal are supplied by connectors on the rear and periphery of the MCM. We therefore chose to attach a cold-plate to the back of each MCM. The condenser part of the heat pipe, which is mounted behind the power supply printed circuit board, is cooled by low-velocity forced air. Total power dissipation is about 30 watts per MCM. With a 2 m/s foreced airflow, the sub-switching-element module (four MCMs) operates at a throughput of 80 Gb/s with a maximum junction temperature of less than 85. Measured thermal resistance between the switch LSI junction and air is about 6/W. This heat-pipe cooling system has a small system footprint, compact hardware, and good cooling capacity.

  • Two-Phase Thermosyphon Cooling for High-Power Multichip Modules

    Tohru KISHIMOTO  Akio HARADA  

     
    PAPER-Instrumentation and Control

      Vol:
    E77-C No:6
      Page(s):
    986-994

    A high-efficiency air cooling system is one of the keys to achieving high throughput in an ATM switching system for Broadband ISDN. Our approach is to cool the multichip modules plugged into a planar packaging system by using a two-phase thermosyphon cold-plate with an air-cooled condenser. Physically separating the cold-plate and the air-cooled condenser and connecting item by small diameter pipes is the key to applying this cooling technology to large planar packaging systems to increase volumetric packaging densities. Furthermore, thermosyphon technology allows the heat transfer process to operate without any external pumping power. Therefore this cooling system is regarded an extended high-performance air cooling system. The optimum structure was investigated while focusing on ways to reduce the external thermal resistance. The external thermal resistance between the system's cold-plate and air inlet was measured to be 0.21 K/W at an air velocity of 2 m/s and a cooling duty of 150 watts. Using this external thermal resistance value, we simulated the cooling characteristics of an MCM containing a 44 array of 10-mm-square LSI chips on an alumina substrate measuring 100100 mm. For an allowable temperature rise of 60, simulated thermal resistance was 6 K/W at an air flow of 2 m/s. This allows a power dissipation of more than 160 watts per MCM and a heat flux of 1.6 W/cm2. This system will extend the applicability of air cooling to power levels generally considered to lie in the domain of liquid cooling, and thus to the ATM switching nodes for B-ISDN.

  • High-Density, High-Bandwidth Connectors for Broad-Band ISDN

    Ken-ichi NAKANO  Kei-ichi YASUDA  Tohru KISHIMOTO  

     
    PAPER-Connectors: Optical and Conventional

      Vol:
    E77-C No:10
      Page(s):
    1567-1574

    High-speed pulse propagation, up to several hundred Mbps or higher, will play an important role in telecommunication systems for B-ISDN. High-performance packaging, especially high-speed, high-throughput interconnection, is strongly required. For advanced telecommunication systems, giga-bit signal transmission has been developed at the multi-chip module level, and 300 to 600 Mbps signal transmission has been reached at the printed circuit board level. Electrical inter-cabinet interconnections of 150 to 300 Mbps have been achieved for up to several tens of meters. High-speed, high-throughput connectors are the key to achieving high-performance telecommunication packaging systems. Two technologies are extremely important. One is for high-density, high-pin-count connectors, and the other is for high-speed signal transmission connectors. The requirements for the connectors needed for advanced high-performance telecommunication systems are described. Several high-density, high-bandwidth connectors developed for high-performance packaging system are introduced.

  • Coaxial SMD Module Connector for High-Speed MCM

    Shinichi SASAKI  Tohru KISHIMOTO  Nobuaki SUGIURA  

     
    PAPER-Connectors: Optical and Conventional

      Vol:
    E77-C No:10
      Page(s):
    1575-1580

    This paper describes a trial coaxial surface mounted connector for PGA-type high-speed multichip modules (MCM). An MCM connector is needed to ensure testability and connection reliability of MCMs mounted on a printed circuit board. Our connector consists of a coaxial elements, a common ground housing made of conductive resin, and a ground contact spring plate. It has 68 signal contacts. We investigated the performance of this connector by experiment and simulation. Its insertion force is only about 53 gf per signal pin. The characteristic impedance is from 45.6 Ω to 61.4 Ω. The average resistance between two contacts is 28 mΩ with a deviation of less than plus or minus 5 mΩ. The insertion is -0.4 dB at 1.0 GHz. Crosstalk noise is less than 1.2%. This prototype connector can transmit pulses of up to 1.2 Gb/s, showing that it is applicable to high-speed MCMs.