The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yasuo KANEKO(2hit)

1-2hit
  • Cooling Characteristics of Small Planar Packaging System Combined with Card-On-Board Packaging for High-Speed Telecommunication Systems

    Tohru KISHIMOTO  Yasuo KANEKO  

     
    PAPER-Components

      Vol:
    E81-C No:10
      Page(s):
    1639-1647

    The small planar packaging (SPP) system described here can be combined with card-on-board (COB) packaging in high-speed asynchronous transfer mode (ATM) switching systems with throughput of over 40-Gb/s. The SPP system provides high I/O pin count density, high packaging density and high cooling capability. Prototype SPP system with air flow control structure for switching MCMs is constructed. Each MCM contained a 35 array of low thermal resistance butt-lead pin-grid-array on a glass ceramic substrate measuring 100170 mm with a plate fin heat-sink. This allows a power dissipation of more than 125 W per MCM, and 300 W per printed circuit board (PCB). Obtained board level heat flux density of the SPP system is 0. 37 W/cm2, which is six times that of conventional COB packaging. The SPP system combined with the COB packaging provides a small system foot-print and compact hardware for high-speed, large capacity ATM switching systems. This high-performance air cooling technology will be especially useful for future broadband ISDN high-speed switching systems.

  • Small Planar Packaging System Combined with Card-On-Board Packaging for High-Speed, High-Density Switching Systems

    Tohru KISHIMOTO  Keiichi YASUNA  Hiroki OKA  Katsumi KAIZU  Sinichi SASAKI  Yasuo KANEKO  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E81-B No:10
      Page(s):
    1894-1902

    An innovative small planar packaging(SPP)system is described that can be combined with card-on-board(COB)packaging in high-speed asynchronous transfer mode switching systems with throughput of over 40-Gb/s. The SPP system provides high I/O pin count density and high packaging density, combining the advantages of both planar packaging used in computer systems and COB packaging used in telecommunication systems. Using a newly developed quasi-coaxial zero-insertion-force connector, point-to-point 311 Mb/s of 8-bit parallel signal transmission is achieved in an arbitrary location on the SPP systems shelf. Also about 5400 I/O connections in the region of the planar packaging system are made, thus the SPP system effectively eliminates the I/O pin count limitation. Furthermore, the heat flux management capability of the SPP system is five times higher than of conventional COB packaging because of its air flow control structure. An SPP system can easily enlarge the switch throughput and it will be useful for future high-speed, high-throughput ATM switching systems.