The search functionality is under construction.

Author Search Result

[Author] Osamu KOBAYASHI(3hit)

1-3hit
  • Amplitude and Phase Control of an RF Signal Using Liquid-Crystals by Optoelectronic Method

    Osamu KOBAYASHI  Hiroyo OGAWA  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1082-1089

    An optoelectronic technique to control both the amplitude and phase of a radio frequency (RF) signal is presented that uses two electrically controllable birefringence mode nematic liquid-crystal spatial light modulators (ECB mode nematic LC-SLMs). An experimental circuit was built and its performance was examined. The intensity could be changed down to -25 dB, and a phase shift of up to 240 degrees was achieved, by changing LC-SLM supplied voltages. Carrier-to-noise ratio (CNR) and intermodulation characteristics of an RF signal were measured. It was, for the first time, found that CNR was not degraded by the amplitude control and phase shift performed by the LC-SLMs.

  • Two-Tone Signal Generation for ADC Testing

    Keisuke KATO  Fumitaka ABE  Kazuyuki WAKABAYASHI  Chuan GAO  Takafumi YAMADA  Haruo KOBAYASHI  Osamu KOBAYASHI  Kiichi NIITSU  

     
    PAPER

      Vol:
    E96-C No:6
      Page(s):
    850-858

    This paper describes algorithms for generating low intermodulation-distortion (IMD) two-tone sinewaves, for such as communication application ADC testing, using an arbitrary waveform generator (AWG) or a multi-bit ΣΔ DAC inside an SoC. The nonlinearity of the DAC generates distortion components, and we propose here eight methods to precompensate for the IMD using DSP algorithms and produce low-IMD two-tone signals. Theoretical analysis, simulation, and experimental results all demonstrate the effectiveness of our approach.

  • A Liquid-Crystal Control, Coherent Type Optoelectronic Phased Array Antenna Beam Forming Network Using Polarization Multiplex Optical Heterodyning

    Osamu KOBAYASHI  Hiroyo OGAWA  

     
    PAPER-Optically Controlled Beam Forming Networks

      Vol:
    E79-C No:1
      Page(s):
    80-86

    An optoelectronic beam forming network (BFN) is presented for a single beam, 3-element phased array antenna that utilizes electrically controllable birefringence mode nematic liquid-crystal cells (ECB mode NLC cells) for phase shifting and amplitude control. In the circuit, a microwave signal is carried by a pair of orthogonal linearly polarized lightwaves (signal and reference lightwaves) using the optical heterodyning technique. Birefringence of liquid-crystals is utilized to selectively control the phase of the signal and reference lightwaves. Because an interferometer is formed on a single signal path, the complexity of the optical circuit is much reduced, compared to the BFNs based on arrays of Mach-Zender interferometers. A prototype circuit is built using laser sources of 1.3 µm, and its performance experimentally examined. With small deviations among the three cells, phase shifts of up to 240 degrees are achived for MW signals from 0.9 GHz to 20 GHz with good stability; attenuation of more than 18dB is achieved. An optoelectronic technique for parallel control of amplitude and phase of MW signals was developed.