1-1hit |
Ruijun MA Stefan HOLST Xiaoqing WEN Aibin YAN Hui XU
As modern CMOS circuits fabricated with advanced technology nodes are becoming more and more susceptible to soft-errors, many hardened latches have been proposed for reliable LSI designs. We reveal for the first time that production defects in such hardened latches can cause two serious problems: (1) these production defects are difficult to detect with conventional scan test and (2) these production defects can reduce the reliability of hardened latches. This paper systematically addresses these two problems with three major contributions: (1) Post-Test Vulnerability Factor (PTVF), a first-of-its-kind metric for quantifying the impact of production defects on hardened latches, (2) a novel Scan-Test-Aware Hardened Latch (STAHL) design that has the highest defect coverage compared to state-of-the-art hardened latch designs, and (3) an STAHL-based scan test procedure. Comprehensive simulation results demonstrate the accuracy of the proposed PTVF metric and the effectiveness of the STAHL-based scan test. As the first comprehensive study bridging the gap between hardened latch design and LSI testing, the findings of this paper will significantly improve the soft-error-related reliability of LSI designs for safety-critical applications.