The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Sae IWATA(2hit)

1-2hit
  • A Robust Indoor/Outdoor Detection Method Based on Spatial and Temporal Features of Sparse GPS Measured Positions

    Sae IWATA  Kazuaki ISHIKAWA  Toshinori TAKAYAMA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    LETTER-Intelligent Transport System

      Vol:
    E102-A No:6
      Page(s):
    860-865

    Cell phones with GPS function as well as GPS loggers are widely used and we can easily obtain users' geographic information. Now classifying the measured GPS positions into indoor/outdoor positions is one of the major challenges. In this letter, we propose a robust indoor/outdoor detection method based on sparse GPS measured positions utilizing machine learning. Given a set of clusters of measured positions whose center position shows the user's estimated stayed position, we calculate the feature values composed of: positioning accuracy, spatial features, and temporal feature of measured positions included in every cluster. Then a random forest classifier learns these feature values of the known data set. Finally, we classify the unknown clusters of measured positions into indoor/outdoor clusters using the learned random forest classifier. The experiments demonstrate that our proposed method realizes the maximum F1 measure of 1.000, which classifies measured positions into indoor/outdoor ones with almost no errors.

  • A Stayed Location Estimation Method for Sparse GPS Positioning Information Based on Positioning Accuracy and Short-Time Cluster Removal

    Sae IWATA  Tomoyuki NITTA  Toshinori TAKAYAMA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER-Intelligent Transport System

      Vol:
    E101-A No:5
      Page(s):
    831-843

    Cell phones with GPS function as well as GPS loggers are widely used and users' geographic information can be easily obtained. However, still battery consumption in these mobile devices is main concern and then obtaining GPS positioning data so frequently is not allowed. In this paper, a stayed location estimation method for sparse GPS positioning information is proposed. After generating initial clusters from a sequence of measured positions, the effective radius is set for every cluster based on positioning accuracy and the clusters are merged effectively using it. After that, short-time clusters are removed temporarily but measured positions included in them are not removed. Then the clusters are merged again, taking all the measured positions into consideration. This process is performed twice, in other words, two-stage short-time cluster removal is performed, and finally accurate stayed location estimation is realized even when the GPS positioning interval is five minutes or more. Experiments demonstrate that the total distance error between the estimated stayed location and the true stayed location is reduced by more than 33% and also the proposed method much improves F1 measure compared to conventional state-of-the-art methods.