The search functionality is under construction.

Author Search Result

[Author] Seong Tae JHANG(4hit)

1-4hit
  • Infrared Target Tracking Using Naïve-Bayes-Nearest-Neighbor

    Shujuan GAO  Insuk KIM  Seong Tae JHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2014/11/18
      Vol:
    E98-D No:2
      Page(s):
    471-474

    Robust yet efficient techniques for detecting and tracking targets in infrared (IR) images are a significant component of automatic target recognition (ATR) systems. In our previous works, we have proposed infrared target detection and tracking systems based on sparse representation method. The proposed infrared target detection and tracking algorithms are based on sparse representation and Bayesian probabilistic techniques, respectively. In this paper, we adopt Naïve Bayes Nearest Neighbor (NBNN) that is an extremely simple, efficient algorithm that requires no training phase. State-of-the-art image classification techniques need a comprehensive learning and training step (e.g., using Boosting, SVM, etc.) In contrast, non-parametric Nearest Neighbor based image classifiers need no training time and they also have other more advantageous properties. Results of tracking in infrared sequences demonstrated that our algorithm is robust to illumination changes, and the tracking algorithm is found to be suitable for real-time tracking of a moving target in infrared sequences and its performance was quite good.

  • A Robust Visual Tracker with a Coupled-Classifier Based on Multiple Representative Appearance Models

    Deqian FU  Seong Tae JHANG  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E96-D No:8
      Page(s):
    1826-1835

    Aiming to alleviate the visual tracking problem of drift which reduces the abilities of almost all online visual trackers, a robust visual tracker (called CCMM tracker) is proposed with a coupled-classifier based on multiple representative appearance models. The coupled-classifier consists of root and head classifiers based on local sparse representation. The two classifiers collaborate to fulfil a tracking task within the Bayesian-based tracking framework, also to update their templates with a novel mechanism which tries to guarantee an update operation along the “right” orientation. Consequently, the tracker is more powerful in anti-interference. Meanwhile the multiple representative appearance models maintain features of the different submanifolds of the target appearance, which the target exhibited previously. The multiple models cooperatively support the coupled-classifier to recognize the target in challenging cases (such as persistent disturbance, vast change of appearance, and recovery from occlusion) with an effective strategy. The novel tracker proposed in this paper, by explicit inference, can reduce drift and handle frequent and drastic appearance variation of the target with cluttered background, which is demonstrated by the extensive experiments.

  • Throttling Capacity Sharing Using Life Time and Reuse Time Prediction in Private L2 Caches of Chip Multiprocessors

    Young-Sik EOM  Jong Wook KWAK  Seong Tae JHANG  Chu Shik JHON  

     
    LETTER-Computer System

      Vol:
    E95-D No:6
      Page(s):
    1676-1679

    In Chip Multi-Processors (CMPs), private L2 caches have potential benefits in future CMPs, e.g. small access latency, performance isolation, tile-friendly architecture and simple low bandwidth on-chip interconnect. But the major weakness of private cache is the higher cache miss rate caused by small private cache capacity. To deal with this problem, private caches can share capacity through spilling replaced blocks to other private caches. However, indiscriminate spilling can make capacity problem worse and influence performance negatively. This letter proposes throttling capacity sharing (TCS) for effective capacity sharing in private L2 caches. TCS determines whether to spill a replaced block by predicting reuse possibility, based on life time and reuse time. In our performance evaluation, TCS improves weighted speedup by 48.79%, 6.37% and 5.44% compared to non-spilling, Cooperative Caching with best spill probability (CC) and Dynamic Spill-Receive (DSR), respectively.

  • Data Filter Cache with Partial Tag Matching for Low Power Embedded Processor

    Ju Hee CHOI  Jong Wook KWAK  Seong Tae JHANG  Chu Shik JHON  

     
    LETTER-Computer System

      Vol:
    E97-D No:4
      Page(s):
    972-975

    Filter caches have been studied as an energy efficient solution. They achieve energy savings via selected access to L1 cache, but severely decrease system performance. Therefore, a filter cache system should adopt components that balance execution delay against energy savings. In this letter, we analyze the legacy filter cache system and propose Data Filter Cache with Partial Tag Cache (DFPC) as a new solution. The proposed DFPC scheme reduces energy consumption of L1 data cache and does not impair system performance at all. Simulation results show that DFPC provides the 46.36% energy savings without any performance loss.