1-2hit |
Shaochong LEI Feng LIANG Zeye LIU Xiaoying WANG Zhen WANG
To tackle the increasing testing power during built-in self-test (BIST) operations, this paper proposes a new test pattern generator (TPG). With the proposed reconfigurable LFSR, the reconfigurable Johnson counter, the decompressor and the XOR gate network, the introduced TPG can produce the single input change (SIC) sequences with few repeated vectors. The proposed SIC sequences minimize switching activities of the circuit under test (CUT). Simulation results on ISCAS benchmarks demonstrate that the proposed method can effectively save test power, and does not impose high impact on test length and hardware for the scan based design.
Feng LIANG ShaoChong LEI ZhiBiao SHAO
An optimized Built-In Self-Test technology is proposed in this paper. A simplified algebraic model is developed to represent the configurations of single input change circuits. A novel single input change sequence generation technique is designed. It consists of a modified scan shift register, a seed storage array and a series of XOR gates. This circuitry can automatically generate single input change sequences of more unique vectors. Experimental results based on the ISCAS-89 benchmark show that the proposed method can achieve high stuck-at fault coverage with low switching activity during test applications.