1-3hit |
Makoto KURIKI Hitoshi ARAI Kazutake UEHIRA Shigenobu SAKAI
An eye-contact technique using a blazed half-transparent mirror (BHM) is developed. This half-transparent mirror (HM) consists of an in-line array of many slanting micro-HMs. We fabricated a prototype system and confirmed the principle of this technique. The resolution of an image reflected by a BHM was simulated to determine how to improve the image quality and the factors degrading the resolution were clarified.
Tadamichi KAWADA Hideki NAKAJIMA Shigeto KOHDA Shigenobu SAKAI
This paper proposes a new duplication redundancy technology, 2 Transistors for 1.5 Gates, that is capable of automatic defect tolerance, so making large, high-resolution, color TFT-LCD panel fabrication both easy and economical. This redundancy technology with automatic defect tolerant capability has a low hardware overhead and is very capable of compensating for open circuit defects in a large active-matrix panel. This technology was confirmed by fabricating a 9.5-inch color TFT-LCD panel with 640480 pixels(960960 dots). This panel showed excellent display performance and produced pictures without defects. The yield improvement effect of this technology was also confirmed by calculation based on the Boltzmann statistics model. Consequently, this technology is clearly seen to have a yield improvement effect equal to defect density reduction of about one order, compared to non redundancy. This technology drastically reduces dot and line defects, enabling fabrication of large, high-resolution, color TFT-LCD panels at a relatively low cost.
Makoto KURIKI Kazutake UEHIRA Hitoshi ARAI Shigenobu SAKAI
We developed an eye-contact technique using a blazed half-transparent mirror (BHM), which is a micro-HM array arranged on the display surface, to make a compact eye-contact videophone. This paper describes a new BHM structure that eliminates ghosts and improves image quality. In the new BHM, the reflection and transmission areas are separated to exclude ghosts from appearing in the captured image. We evaluated the characteristics of the captured and displayed images. The results show that the contrast ratio of the captured image and the brightness of both captured and displayed images are much better than with the previous BHM.