The search functionality is under construction.

Author Search Result

[Author] Shota TAKESHIMA(2hit)

1-2hit
  • Layout-Driven Skewed Clock Tree Synthesis for Superconducting SFQ Circuits

    Kazuyoshi TAKAGI  Yuki ITO  Shota TAKESHIMA  Masamitsu TANAKA  Naofumi TAKAGI  

     
    PAPER

      Vol:
    E94-C No:3
      Page(s):
    288-295

    In this paper, we propose a method for layout-driven skewed clock tree synthesis for SFQ logic circuits. For a given logic circuit without a clock tree, our algorithm outputs a circuit with a synthesized clock tree and timing adjustments achieving the given clock period and a rough placement of the clocked gates. In the proposed algorithm, clocked gates are grouped into levels and the clock tree is synthesized for each level. For each level, we estimate the clock timing for all possible placements of each gate, and then we search a placement of all gates that minimizes the total number of delay elements for timing adjustment. Once the placement is obtained, we synthesize a clock tree without wire intersections. We applied the proposed method to a moderate size circuit and confirmed that clock trees satisfying given timing requirements can be synthesized automatically.

  • Automated Passive-Transmission-Line Routing Tool for Single-Flux-Quantum Circuits Based on A* Algorithm

    Masamitsu TANAKA  Koji OBATA  Yuki ITO  Shota TAKESHIMA  Motoki SATO  Kazuyoshi TAKAGI  Naofumi TAKAGI  Hiroyuki AKAIKE  Akira FUJIMAKI  

     
    PAPER-Digital Applications

      Vol:
    E93-C No:4
      Page(s):
    435-439

    We demonstrated an automated passive-transmission-line routing tool for single-flux-quantum (SFQ) circuits. The tool is based on the A* algorithm, which is widely used in CMOS LSI design, and tuned for microstrip/strip lines formed in the SRL 4-Nb layer structure. In large-scale SFQ circuits with 10000-20000 Josephson junctions, such as microprocessors, 80-90% of the wires can be automatically routed in about ten minutes. We verified correct operation above 40 GHz for an automatically routed 44 switch circuit from on-chip high-speed tests. The resulting circuit size and operating frequency were comparable to those of a manually designed result. We believe that the tool is useful for large-scale SFQ circuit design using conventional fabrication processes.