The search functionality is under construction.

Author Search Result

[Author] Hiroyuki AKAIKE(8hit)

1-8hit
  • Nb 9-Layer Fabrication Process for Superconducting Large-Scale SFQ Circuits and Its Process Evaluation Open Access

    Shuichi NAGASAWA  Kenji HINODE  Tetsuro SATOH  Mutsuo HIDAKA  Hiroyuki AKAIKE  Akira FUJIMAKI  Nobuyuki YOSHIKAWA  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    INVITED PAPER

      Vol:
    E97-C No:3
      Page(s):
    132-140

    We describe the recent progress on a Nb nine-layer fabrication process for large-scale single flux quantum (SFQ) circuits. A device fabricated in this process is composed of an active layer including Josephson junctions (JJ) at the top, passive transmission line (PTL) layers in the middle, and a DC power layer at the bottom. We describe the process conditions and the fabrication equipment. We use both diagnostic chips and shift register (SR) chips to improve the fabrication process. The diagnostic chip was designed to evaluate the characteristics of basic elements such as junctions, contacts, resisters, and wiring, in addition to their defect evaluations. The SR chip was designed to evaluate defects depending on the size of the SFQ circuits. The results of a long-term evaluation of the diagnostic and SR chips showed that there was fairly good correlation between the defects of the diagnostic chips and yields of the SRs. We could obtain a yield of 100% for SRs including 70,000JJs. These results show that considerable progress has been made in reducing the number of defects and improving reliability.

  • Pattern-Size-Free Planarization for Multilayered Large-Scale SFQ Circuits

    Kenji HINODE  Shuichi NAGASAWA  Masao SUGITA  Tetsuro SATOH  Hiroyuki AKAIKE  Yoshihiro KITAGAWA  Mutsuo HIDAKA  

     
    LETTER-Superconductive Electronics

      Vol:
    E86-C No:12
      Page(s):
    2511-2513

    We have developed a planarization method applicable to large-scale superconductive Nb device fabrication. A planarized multi-layer wiring structure is obtained independently of the wiring size (width, length, and density) by combining three steps for fabricating an SiO2 insulator layer: bias-sputtering, chemical mechanical polishing, and etching with a reversal mask. Fabricated three-level wiring structures, consisting of 200- or 300-nm-thick Nb and SiO2 layers, had excellent layer flatness, and the leakage current (< 0.1 µA/cm2) between the Nb layers was sufficiently low. Two hundred chains of stepwise and stacked contacts yielded a sufficiently large critical current, typically more than 10 mA at 4.2 K.

  • Large-Scale Integrated Circuit Design Based on a Nb Nine-Layer Structure for Reconfigurable Data-Path Processors Open Access

    Akira FUJIMAKI  Masamitsu TANAKA  Ryo KASAGI  Katsumi TAKAGI  Masakazu OKADA  Yuhi HAYAKAWA  Kensuke TAKATA  Hiroyuki AKAIKE  Nobuyuki YOSHIKAWA  Shuichi NAGASAWA  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    INVITED PAPER

      Vol:
    E97-C No:3
      Page(s):
    157-165

    We describe a large-scale integrated circuit (LSI) design of rapid single-flux-quantum (RSFQ) circuits and demonstrate several reconfigurable data-path (RDP) processor prototypes based on the ISTEC Advanced Process (ADP2). The ADP2 LSIs are made up of nine Nb layers and Nb/AlOx/Nb Josephson junctions with a critical current density of 10kA/cm2, allowing higher operating frequencies and integration. To realize truly large-scale RSFQ circuits, careful design is necessary, with several compromises in the device structure, logic gates, and interconnects, balancing the competing demands of integration density, design flexibility, and fabrication yield. We summarize numerical and experimental results related to the development of a cell-based design in the ADP2, which features a unit cell size reduced to 30-µm square and up to four strip line tracks in the unit cell underneath the logic gates. The ADP LSIs can achieve ∼10 times the device density and double the operating frequency with the same power consumption per junction as conventional LSIs fabricated using the Nb four-layer process. We report the design and test results of RDP processor prototypes using the ADP2 cell library. The RDP processors are composed of many arrays of floating-point units (FPUs) and switch networks, and serve as accelerators in a high-performance computing system. The prototypes are composed of two-dimensional arrays of several arithmetic logic units instead of FPUs. The experimental results include a successful demonstration of full operation and reconfiguration in a 2×2 RDP prototype made up of 11.5k junctions at 45GHz after precise timing design. Partial operation of a 4×4 RDP prototype made up of 28.5k-junctions is also demonstrated, indicating the scalability of our timing design.

  • NbN Josephson Junctions for Single-Flux-Quantum Circuits

    Hiroyuki AKAIKE  Naoto NAITO  Yuki NAGAI  Akira FUJIMAKI  

     
    PAPER

      Vol:
    E94-C No:3
      Page(s):
    301-306

    We describe the fabrication processes and electrical characteristics of two types of NbN junctions. One is a self-shunted NbN/NbNx/AlN/NbN Josephson junction, which is expected to improve the density of integrated circuits; the other is an underdamped NbN/AlNx/NbN tunnel junction with radical-nitride AlNx barriers, which has highly controllable junction characteristics. In the former, the junction characteristics were changed from underdamped to overdamped by varying the thickness of the NbNx layer. Overdamped junctions with a 6-nm-thick NbNx film exhibited a characteristic voltage of Vc = 0.8 mV and a critical current density of Jc = 22 A/cm2 at 4.2 K. In the junctions with radical-nitride AlNx barriers, Jc could be controlled in the range 0.01-3 kA/cm2 by varying the process conditions, and good uniformity of the junction characteristics was obtained.

  • Automated Passive-Transmission-Line Routing Tool for Single-Flux-Quantum Circuits Based on A* Algorithm

    Masamitsu TANAKA  Koji OBATA  Yuki ITO  Shota TAKESHIMA  Motoki SATO  Kazuyoshi TAKAGI  Naofumi TAKAGI  Hiroyuki AKAIKE  Akira FUJIMAKI  

     
    PAPER-Digital Applications

      Vol:
    E93-C No:4
      Page(s):
    435-439

    We demonstrated an automated passive-transmission-line routing tool for single-flux-quantum (SFQ) circuits. The tool is based on the A* algorithm, which is widely used in CMOS LSI design, and tuned for microstrip/strip lines formed in the SRL 4-Nb layer structure. In large-scale SFQ circuits with 10000-20000 Josephson junctions, such as microprocessors, 80-90% of the wires can be automatically routed in about ten minutes. We verified correct operation above 40 GHz for an automatically routed 44 switch circuit from on-chip high-speed tests. The resulting circuit size and operating frequency were comparable to those of a manually designed result. We believe that the tool is useful for large-scale SFQ circuit design using conventional fabrication processes.

  • 100 GHz Demonstrations Based on the Single-Flux-Quantum Cell Library for the 10 kA/cm2 Nb Multi-Layer Process

    Yuki YAMANASHI  Toshiki KAINUMA  Nobuyuki YOSHIKAWA  Irina KATAEVA  Hiroyuki AKAIKE  Akira FUJIMAKI  Masamitsu TANAKA  Naofumi TAKAGI  Shuichi NAGASAWA  Mutsuo HIDAKA  

     
    PAPER-Digital Applications

      Vol:
    E93-C No:4
      Page(s):
    440-444

    A single flux quantum (SFQ) logic cell library has been developed for the 10 kA/cm2 Nb multi-layer fabrication process to efficiently design large-scale SFQ digital circuits. In the new cell library, the critical current density of Josephson junctions is increased from 2.5 kA/cm2 to 10 kA/cm2 compared to our conventional cell library, and the McCumber-Stwart parameter of each Josephson junction is increased to 2 in order to increase the circuit operation speed. More than 300 cells have been designed, including fundamental logic cells and wiring cells for passive interconnects. We have measured all cells and confirmed they stably operate with wide operating margins. On-chip high-speed test of the toggle flip-flop (TFF) cell has been performed by measuring the input and output voltages. The TFF cell at the input frequency of up to 400 GHz was confirmed to operate correctly. Also, several fundamental digital circuits, a 4-bit concurrent-flow shift register and a bit-serial adder have been designed using the new cell library, and the correct operations of the circuits have been demonstrated at high clock frequencies of more than 100 GHz.

  • All MgB2 Josephson Junctions with Amorphous Boron Barriers

    Naoki MITAMURA  Chikaze MARUYAMA  Hiroyuki AKAIKE  Akira FUJIMAKI  Rintaro ISHII  Yoshihiro NIIHARA  Michio NAITO  

     
    PAPER-Junctions

      Vol:
    E93-C No:4
      Page(s):
    468-472

    All MgB2 Josephson junctions with amorphous boron barriers have been fabricated on C-plane sapphire substrates by using a co-evaporation method. The junctions showed Josephson currents and the nonlinear current-voltage characteristics which seem to reflect the superconducting energy gap. The critical current was observed when the thickness of the amorphous boron was in the range of 5 nm to 20 nm. The critical current density was estimated to be 0.4 A/cm2 to 450 A/cm2. By observing he temperature dependence of the critical current we found that the junction had a critical temperature of 10 K and a normal layer in its barrier structure.

  • A Reconfigurable Data-Path Accelerator Based on Single Flux Quantum Circuits Open Access

    Hiroshi KATAOKA  Hiroaki HONDA  Farhad MEHDIPOUR  Nobuyuki YOSHIKAWA  Akira FUJIMAKI  Hiroyuki AKAIKE  Naofumi TAKAGI  Kazuaki MURAKAMI  

     
    INVITED PAPER

      Vol:
    E97-C No:3
      Page(s):
    141-148

    The single flux quantum (SFQ) is expected to be a next-generation high-speed and low-power technology in the field of logic circuits. CMOS as the dominant technology for conventional processors cannot be replaced with SFQ technology due to the difficulty of implementing feedback loops and conditional branches using SFQ circuits. This paper investigates the applicability of a reconfigurable data-path (RDP) accelerator based on SFQ circuits. The authors introduce detailed specifications of the SFQ-RDP architecture and compare its performance and power/performance ratio with those of a graphics-processing unit (GPU). The results show at most 1600 times higher efficiency in terms of Flops/W (floating-point operations per second/Watt) for some high-performance computing application programs.