The search functionality is under construction.

Author Search Result

[Author] Yuki NAGAI(7hit)

1-7hit
  • Design and Lattice Structure of FIR Paraunitary Filter Banks with Linear Phase

    Takayuki NAGAI  C.W. KOK  Masaaki IKEHARA  Truong Q. NGUYEN  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:4
      Page(s):
    712-721

    In this paper, we present a novel way to design biorthogonal and paraunitary linear phase filter banks. The square error of the perfect reconstruction of the filter bank is expressed in quadratic form of filter coefficients and the cost function is minimized by solving linear equation iteratively without nonlinear optimization. With some modifications, this method is extended to the design of paraunitary filter banks. Furthermore, the lattice structure of odd-channel paraunitary filter banks is also derived. Design examples are given to validate the proposed method.

  • NbN Josephson Junctions for Single-Flux-Quantum Circuits

    Hiroyuki AKAIKE  Naoto NAITO  Yuki NAGAI  Akira FUJIMAKI  

     
    PAPER

      Vol:
    E94-C No:3
      Page(s):
    301-306

    We describe the fabrication processes and electrical characteristics of two types of NbN junctions. One is a self-shunted NbN/NbNx/AlN/NbN Josephson junction, which is expected to improve the density of integrated circuits; the other is an underdamped NbN/AlNx/NbN tunnel junction with radical-nitride AlNx barriers, which has highly controllable junction characteristics. In the former, the junction characteristics were changed from underdamped to overdamped by varying the thickness of the NbNx layer. Overdamped junctions with a 6-nm-thick NbNx film exhibited a characteristic voltage of Vc = 0.8 mV and a critical current density of Jc = 22 A/cm2 at 4.2 K. In the junctions with radical-nitride AlNx barriers, Jc could be controlled in the range 0.01-3 kA/cm2 by varying the process conditions, and good uniformity of the junction characteristics was obtained.

  • Noise Reduction in Time Domain Using Referential Reconstruction

    Takehiro IHARA  Takayuki NAGAI  Kazuhiko OZEKI  Akira KUREMATSU  

     
    PAPER-Speech and Hearing

      Vol:
    E89-D No:3
      Page(s):
    1203-1213

    We present a novel approach for single-channel noise reduction of speech signals contaminated by additive noise. In this approach, the system requires speech samples to be uttered in advance by the same speaker as that of the input signal. Speech samples used in this method must have enough phonetic variety to reconstruct the input signal. In the proposed method, which we refer to as referential reconstruction, we have used a small database created from examples of speech, which will be called reference signals. Referential reconstruction uses an example-based approach, in which the objective is to find the candidate speech frame which is the most similar to the clean input frame without noise, although the input frame is contaminated with noise. When candidate frames are found, they become final outputs without any special processing. In order to find the candidate frames, a correlation coefficient is used as a similarity measure. Through automatic speech recognition experiments, the proposed method was shown to be effective, particularly for low-SNR speech signals corrupted with white noise or noise in high-frequency bands. Since the direct implementation of this method requires infeasible computational cost for searching through reference signals, a coarse-to-fine strategy is introduced in this paper.

  • Fast LOT with Unequal Length Basis Functions: Realization and Application in Subband Image Coding

    Takayuki NAGAI  Masaaki IKEHARA  

     
    PAPER-Digital Signal Processing

      Vol:
    E82-A No:5
      Page(s):
    825-834

    In this paper, the Lapped Orthogonal Transform (LOT) with unequal length basis function is considered. The proposed unequal length LOT (ULLOT) has both long basis of length 2M and short basis of length M, while the lengths of all bases of the conventional LOT are 2M. A new class of LOT can be constructed with some modifications of Malvar's Fast LOT. Therefore, the fast algorithm for the Discrete Cosine Transform (DCT) will surely facilitate the computation of the ULLOT. Although the computational complexity of the ULLOT is always lower than that of the LOT, there exist some cases where the coding gain of the ULLOT becomes slightly higher than that of the LOT. Its ability to reduce ringing artifacts is an attractive feature as well. The size-limited structure for the finite length signal is investigated and the ULLOTs are tested on image coding application. The simulation results confirm the validity of the proposed ULLOT.

  • High-Density Implementation Techniques for Long-Range Radar Using Horn and Lens Antennas Open Access

    Akira KITAYAMA  Akira KURIYAMA  Hideyuki NAGAISHI  Hiroshi KURODA  

     
    PAPER

      Pubricized:
    2021/03/12
      Vol:
    E104-C No:10
      Page(s):
    596-604

    Long-range radars (LRRs) for higher level autonomous driving (AD) will require more antennas than simple driving assistance. The point at issue here is 50-60% of the LRR module area is used for antennas. To miniaturize LRR modules, we use horn and lens antenna with highly efficient gain. In this paper, we propose two high-density implementation techniques for radio-frequency (RF) front-end using horn and lens antennas. In the first technique, the gap between antennas was eliminated by taking advantage of the high isolation performance of horn and lens antennas. In the second technique, the RF front-end including micro-strip-lines, monolithic microwave integrated circuits, and peripheral parts is placed in the valley area of each horn. We fabricated a prototype LRR operating at 77 GHz with only one printed circuit board (PCB). To detect vehicles horizontally and vertically, this LRR has a minimum antenna configuration of one Tx antenna and four Rx antennas placed in 2×2 array, and 30 mm thickness. Evaluation results revealed that vehicles could be detected up to 320 m away and that the horizontal and vertical angle error was less than +/- 0.2 degrees, which is equivalent to the vehicle width over 280 m. Thus, horn and lens antennas implemented using the proposed techniques are very suitable for higher level AD LRRs.

  • Superconducting Packet Switch

    Mutsumi HOSOYA  Willy HIOE  Shin'ya KOMINAMI  Hideyuki NAGAISHI  Toshikazu NISHINO  

     
    INVITED PAPER-Superconductive digital integrated circuits

      Vol:
    E79-C No:9
      Page(s):
    1186-1192

    This paper introduces a proto-type model of a superconducting packet switch which is composed of an input buffer, a contention solver, and a distribution network. The contention solver checks for contention by comparing packet addresses while sorting the packets. The input buffer is used for waiting when contention occurs. The distribution network distributes packets which are guaranteed to be contention-free by the contention solver. The design of the proto-type has been completed and the operation has been numerically simulated and confirmed. The elementary circuits of the input buffer, the contention solver, and the distribution network are fabricated by standard Nb tri-layer process and the correct operations are confirmed.

  • Horn and Lens Antenna with Low Height and Low Antenna Coupling for Compact Automotive 77-GHz Long-Range Radar

    Akira KURIYAMA  Hideyuki NAGAISHI  Hiroshi KURODA  Akira KITAYAMA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/04/08
      Vol:
    E103-C No:10
      Page(s):
    426-433

    Smaller antenna structures for long-range radar transmitters and receivers operating in the 77-GHz band for automotive application have been achieved by using antennas with a horn, lens, and microstrip antenna. The transmitter (Tx) antenna height was reduced while keeping the antenna gain high and the antenna substrate small by developing an antenna structure composed of two differential horn and lens antennas in which the diameter and focus distance of the lenses were half those in the previous design. The microstrip antennas are directly connected to the differential outputs of a monolithic microwave integrated circuit. A Tx antenna fabricated using commercially available materials was 14mm high and had an output-aperture of 18×44mm. It achieved an antenna gain of 23.5dBi. The antenna substrate must be at least 96mm2. The antenna had a flat beam with half-power elevation and azimuth beamwidths of 4.5° and 21°, respectively. A receiver (Rx) antenna array composed of four sets of horn and lens antennas with an output-aperture of 9×22mm and a two-by-two array configuration was fabricated for application in a newly proposed small front-end module with azimuth direction of arrival (DOA) estimation. The Rx antenna array had an antenna coupling of less than -31dB in the 77-GHz band, which is small enough for DOA estimation by frequency-modulated continuous wave radar receivers even though the four antennas are arranged without any separation between their output-apertures.