The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Steven P. DENBAARS(2hit)

1-2hit
  • GaN-Based FETs for Microwave Power Amplification

    Yi-Feng WU  Bernd P. KELLER  Stacia KELLER  Jane J. XU  Brian J. THIBEAULT  Steven P. DENBAARS  Umesh K. MISHRA  

     
    INVITED PAPER-RF Power Devices

      Vol:
    E82-C No:11
      Page(s):
    1895-1905

    We review advances in GaN-based microwave power field-effect-transistors (FETs). Evolution in device technology included metal-semiconductor-field-effect-transistors (MESFETs), heterostructure-field-effect-transistors (HFETs), modulation-doped-field-effect-transistors (MODFETs) or high-mobility-transistors (HEMT), HEMTs with high Al contents, HEMTs with gate recess and GaN-channel HEMTs grown on SiC substrates. The power density was first reported as 1.1 W/mm at 2 GHz using an AlGaN/GaN HEMT structure grown on sapphire substrate, and was subsequently improved to 1.5-1.7 W/mm at 4-10 GHz by refinement in device structure and processing techniques. This was advanced to 2.6-3.3 W/mm at 8-18 GHz by adopting a high-Al-content AlGaN barrier layer. Success in gate recess helped to further increase the power density of these GaN HEMTs on sapphire substrates to 4.6 W/mm at 6 GHz. Substrate replacement of sapphire by SiC, for excellent thermal dissipation, has boosted performance to 6.9 W/mm at 10 GHz, which is higher than GaAs-based FETs by a factor of 6. Device periphery was scaled up to obtain high total output power. On one hand, GaN HEMTs on sapphire, using a flip-chip bonding technology for thermal management, have generated 7.6 W at 4 GHz. On another hand, GaN HEMTs on SiC, taking advantage of the high substrate thermal conductivity, have achieved 9.1 W at 7.4 GHz. Two types of initial GaN-based power amplifiers were also demonstrated using a flip-chip IC scheme. The transistors used were 0.7 to 0.8-µm-long-gate GaN HEMTs. Bandwidths of 1-8 GHz and 3-9 GHz were achieved with gains up to 11.5 dB. The output power levels ranged from 3.2 to 4.6 W using devices with 2 and 3-mm gate peripheries, which were higher than that achievable with GaAs-based HEMTs of the same size by a factor of 2. Traps in the device structure currently limit performance of most GaN FETs. These traps cause dispersion in the I-V characteristics, which increases knee voltage and reduces channel current under RF gate drive. However, they are believed to be not inherent in the GaN semiconductor system and can be minimized as the technology matures.

  • Distributed Feedback Laser Diodes Employing Embedded Dielectric Gratings Located above the Active Region

    Amber C. ABARE  Steven P. DENBAARS  Larry A. COLDREN  

     
    INVITED PAPER

      Vol:
    E83-C No:4
      Page(s):
    560-563

    Laser diodes in the (Al, Ga, In) N system are attractive for many applications. Due to the wurtzite crystal structure, cleaved facets are not easily produced. We have investigated distributed feedback (DFB) laser diodes employing embedded dielectric gratings with the grating located above the active region. The dielectric gratings are incorporated via epitaxial lateral overgrowth. The DFB laser diodes had reduced threshold current densities over the etched cavity devices, with a minimum of 15 kA/cm2. The spectral emission width was considerably reduced for the DFB devices. Voltages for the DFB devices were high due to the presence of the Si3N4 grating within the p-type material.