The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Takeo ATSUGI(2hit)

1-2hit
  • 25 GHz Band Active Integrated Antenna for Broadband Mobile Wireless Access Systems

    Tomohiro SEKI  Fusao NUNO  Takeo ATSUGI  Masahiro UMEHIRA  Junji SATO  Takashi ENOKI  

     
    PAPER

      Vol:
    E86-C No:8
      Page(s):
    1520-1526

    This paper first presents an active integrated antenna configuration designed for broadband mobile wireless access systems using the 25-GHz band. This active integrated antenna comprises a microstrip antenna array and RF front-end circuits adopting spatial power combining schemes for reduced power consumption of the power amplifiers. Furthermore, the antenna and RF circuits are integrated into each side of a thick copper backing plate and both are connected through microstrip line /slot transitions. The developed active integrated antenna achieves the output power of 14.6 dBm and a noise figure of less than 5 dB. The wireless system using the developed active integrated antenna achieves a 6-dB improvement in the packet error rate compared to that using a passive antenna with the same array design as the active integrated antenna. Furthermore, we obtained the first license of the active integrated antenna for commercial use in high-speed wireless communication systems in Japan.

  • A Feedback-Loop Type Transmission Power Control for TDMA Satellite Communication Systems

    Hiroshi KAZAMA  Takeo ATSUGI  Shuzo KATO  

     
    PAPER

      Vol:
    E76-B No:5
      Page(s):
    529-535

    This paper proposes a feedback-loop type transmission power control (TPC) scheme coupled with first and second order prediction methods and analyzes the optimum control period and residual control error. In order to minimize residual control error, the three main factors contributing to residual control error are analyzed. First, to detect accurately up-link rain attenuation, a channel quality detection method is proposed and analyzed experimentally for puseudo-error detection. Second, rain attenuation rates in Ka band are measured and analyzed statistically. Finally, the optimum control period of the proposed TPC scheme is analyzed. The simulation results on the prototype TPC system show a maximum of 4.5 dB residual control error is achievable with an optimum control period of about 1 second to 1.5 seconds.