1-2hit |
Takeshi OKUMOTO Kumpei YOSHIKAWA Makoto NAGATA
An effective supply voltage monitor evaluates dynamic variation of (Vdd-Vss) within power rails of integrated circuits on a die. The monitor occupies an area of as small as 10.8 14.5 µm2 and is followed by backend digitizing circuits, both using 3.3 V thick oxide transistors in a 65 nm CMOS technology for covering all power domains from core circuits to peripheral I/O rings. A prototype demonstrates capturing of effective supply voltage waveforms in digital (shift registers) as well as in analog (4 bit Flash ADC) circuits.
Kenji SHIMAZAKI Makoto NAGATA Takeshi OKUMOTO Shozo HIRANO Hiroyuki TSUJIKAWA
Dynamic power supply noise measurements with resolutions of 100 ps and 100 µV for 100 ns and 1 V ranges are performed at various operating frequencies up to 400 MHz on multiple points in a low power register file and SRAM for product chips by using on-chip noise detectors. The measurements show that the noises are clearly emphasized in frequency domains by the interaction of circuit operations and bias network's AC transfers. A proposed design methodology that covers a fast SPICE simulator and parasitic extractors can predict dynamic noises from power supplies, ground, well, and substrate interactions to provide robustness to the design of low power body bias control circuitry.