1-3hit |
Suresh M. NISSANKA Ken MISHINA Akihiro MARUTA Shunsuke MITANI Kazuyuki ISHIDA Katsuhiro SHIMIZU Tatsuo HATTA Ken-ichi KITAYAMA
All-optical wavelength conversion and modulation format conversion will be needed in the next generation high-speed optical communication networks. We have proposed and successfully demonstrated the error free operation of all-optical modulation format conversion from NRZ-OOK to RZ-BPSK using SOA based MZI wavelength converter. In this paper, we experimentally investigate the wavelength conversion characteristics of the proposed NRZ-OOK/RZ-BPSK modulation format converter. The results show that error free modulation format conversion is possible over the entire C band.
Toshitsugu UESUGI Shiho ZAIZEN Atsushi SUGITATSU Tatsuo HATTA
We propose a polymeric waveguide optical switch using a novel drive mechanism. The switch uses a flexible polymeric waveguide film where trenches are formed at cross-points of the waveguides. Light passes through the trench while it is closed. When the trench opens, light path changes by total internal reflection between the air gap and the polymeric waveguide. Therefore, we can control light paths by changing the trench state between closed and open one. In order to realize this, a rotating arm is inserted near the trench. As rotational force transfers to the trench through the arm and the film, the trench switches from closed to open state and vice versa. We investigated this rotary drive mechanism by three-dimensional (3D) structural analysis, designed the optical switch, and experimentally demonstrated the switching operation.
Yasunori MIYAZAKI Kazuhisa TAKAGI Keisuke MATSUMOTO Toshiharu MIYAHARA Tatsuo HATTA Satoshi NISHIKAWA Toshitaka AOYAGI Kuniaki MOTOSHIMA
The design aspects of the bulk InGaAsP semiconductor optical amplifier integrated Mach-Zehnder interferometer (SOA-MZI) optimized for 40 Gbps-NRZ all optical wavelength conversion are described. The dimensions of the SOA active waveguide have been optimized for fast gain recovery by maximizing the gain and adjusting the wavelength-converted NRZ waveforms. Submicron-width buried heterostructure (BH) SOA waveguides were fabricated successfully and showed little leakage current. The experimental wavelength-converted optical waveform agreed well to the numerical simulations, and mask-compliant 40 G-NRZ wavelength-converted waveform was obtained by the optimized SOA-MZI. 40 G-NRZ full C-band operation and polarization-insensitive operation of SOA-MZI were also achieved.