The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Tetsuro NAKAMURA(3hit)

1-3hit
  • Possibility of Phonon-Assistance on Electronic Transport and the Cooper Pairing in Oxide Superconductors

    Ryozo AOKI  Hironaru MURAKAMI  Tetsuro NAKAMURA  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1310-1318

    The Cooper pairing interaction in high Tc oxide superconductor is discussed in terms of an empirical expression; TcDexp[1/g], gcωo which was derived in our previous investigation. The dual character of this expression consisting of the phonon Debye temperature D and electronic excitation ωo in the mid-infrared region can be interpreted on the basis of the phonon-assisted mechanism on carrier conduction and the electronic excitation. A tunneling spectrum here presented shows certain evidence of the phonon contribution. The characteristics of the long range superconductive proximity phenomena recently reported are also may be interpreted by this mechanism.

  • A Wide-Dynamic-Range Optical Receiver for Biotelemetry System

    Nobuo KARITA  Shoji KAWAHITO  Makoto ISHIDA  Shunji NAGAOKA  Shiro USUI  Tetsuro NAKAMURA  

     
    LETTER-Medical Electronics and Medical Information

      Vol:
    E74-D No:5
      Page(s):
    1343-1344

    This letter describes a high-speed wide dynamic range optical pulse receiver for multichannel biotelemetry system. A non-linear feedback impedance approach in transimpedance type receiver has been proposed for achieving wide dynamic range characteristics. A prototype receiver integrated circuit (IC) has been designed and implemented by bipolar IC process.

  • VLSI-Oriented Multiple-Valued Current-Mode Arithmetic Circuits Using Redundant Number Representations

    Shoji KAWAHITO  Yasuhiro MITSUI  Tetsuro NAKAMURA  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    446-454

    This paper presents a VLSI-oriented arithmetic design method using a radix-2 redundant number representation with digit set {0, 1, 2} and multiple-valued current-mode (MVCM) circuit technology. We propose a carry-propagation-free (CPF) parallel addition method with redundant digit set {0, 1, 2} which is suitable for the design with MVCM circuits. Several types of CPF parallel adders are compared and the proposed CPF parallel adder with MVCM circuits offers the best total performance with respect to speed, complexity, and power dissipation. The designed basic arithmetic circuits has sufficient noise immunity to the supply voltage fluctuation which is important for stable operations of the VLSI circuits. The CPF parallel adder is effectively used as the reduction scheme of partial products in a high-speed compact multiplier. For example, the designed 3232 bit multiplier reduces the number of active elements to two-third and the number of interconnections to one-fifth of the corresponding binary Wallace tree multiplier, where the speed is almost the same. The structure is simple and regular. The static power dissipation of the designed 32-bit multiplier is estimated to be the mean value of 212 mW and the worst case of 708 mW. The total power including dynamic power dissipation would not be so large compared with that of the 32-bit binary CMOS multiplier reported under 10 MHz operation.