1-2hit |
Masako FUJII Koji NII Hiroshi MAKINO Shigeki OHBAYASHI Motoshige IGARASHI Takeshi KAWAMURA Miho YOKOTA Nobuhiro TSUDA Tomoaki YOSHIZAWA Toshikazu TSUTSUI Naohiko TAKESHITA Naofumi MURATA Tomohiro TANAKA Takanari FUJIWARA Kyoko ASAHINA Masakazu OKADA Kazuo TOMITA Masahiko TAKEUCHI Shigehisa YAMAMOTO Hiromitsu SUGIMOTO Hirofumi SHINOHARA
We propose a new large-scale logic test element group (TEG), called a flip-flop RAM (FF-RAM), to improve the total process quality before and during initial mass production. It is designed to be as convenient as an SRAM for measurement and to imitate a logic LSI. We implemented a 10 Mgates FF-RAM using our 65-nm CMOS process. The FF-RAM enables us to make fail-bit maps (FBM) of logic cells because of its cell array structure as an SRAM. An FF-RAM has an additional structure to detect the open and short failure of upper metal layers. The test results show that it can detect failure locations and layers effortlessly using FBMs. We measured and analyzed it for both the cell arrays and the upper metal layers. Their results provided many important clues to improve our processes. We also measured the neutron-induced soft error rate (SER) of FF-RAM, which is becoming a serious problem as transistors become smaller. We compared the results of the neutron-induced soft error rate to those of previous generations: 180 nm, 130 nm, and 90 nm. Because of this TEG, we can considerably shorten the development period for advanced CMOS technology.
Dhany ARIFIANTO Tomohiro TANAKA Takashi MASUKO Takao KOBAYASHI
Borrowing the notion of instantaneous frequency that was developed in the context of time-frequency signal analysis, an instantaneous frequency amplitude spectrum (IFAS) is introduced for estimating fundamental frequency of speech signal in both noiseless and adverse environments. We define harmonicity measure as a quantity that indicates degree of periodical regularity in the IFAS and that shows substantial difference between periodic signal and noise-like waveform. The harmonicity measure is applied to estimate the existence of fundamental frequency. We provide experimental examples to demonstrate the general applicability of the harmonicity measure and apply the proposed procedure to Japanese continuous speech signals. The results show that the proposed method outperforms the conventional methods with or without the presence of noise.