The search functionality is under construction.

Author Search Result

[Author] Toshiaki YAMAMOTO(5hit)

1-5hit
  • LTE/WiGig RAN-Level Interworking Architecture for 5G Millimeter-Wave Heterogeneous Networks

    Hailan PENG  Toshiaki YAMAMOTO  Yasuhiro SUEGARA  

     
    PAPER

      Vol:
    E98-B No:10
      Page(s):
    1957-1968

    Heterogeneous networks (HetNet) with different radio access technologies have been deployed to support a range of communication services. To manage these HetNets efficiently, some interworking solutions such as MIH (media independent handover), ANQP (access network query protocol) or ANDSF (access network discovery and selection function) have been studied. Recently, the millimeter-wave (mm-wave) based HetNet has been explored to provide multi-gigabits-per-second data rates over short distances in the 60GHz frequency band for 5G wireless networks. WiGig (Wireless Gigabit Alliance) is one of the available radio access technologies using mm-wave. However, the conventional interworking solutions are not sufficient for the implementation of LTE (Long Term Evolution)/WiGig HetNets. Since the coverage area of WiGig is very small due to the high propagation loss of the mm-wave band signal, it is difficult for UEs to perform cell discovery and handover if using conventional LTE/WLAN (wireless local area networks) interworking solutions, which cannot support specific techniques of WiGig well, such as beamforming and new media access methods. To solve these problems and find solutions for LTE/WiGig interworking, RAN (radio access network)-level tightly coupled interworking architecture will be a promising solution. As a RAN-level tightly coupled interworking solution, this paper proposes to design a LTE/WiGig protocol adaptor above the protocol stacks of WiGig to process and transfer control signaling and user data traffic. The proposed extended control plane can assist UEs to discover and access mm-wave BSs successfully and support LTE macro cells to jointly control the radio resources of both LTE and WiGig, so as to improve spectrum efficiency. The effectiveness of the proposal is evaluated. Simulation results show that LTE/WiGig HetNets with the proposed interworking solution can decrease inter-cell handover and improve user throughput significantly. Moreover, the downlink backhaul throughput and energy efficiency of mm-wave HetNets are evaluated and compared with that of 3.5GHz LTE HetNets. Results indicate that 60GHz mm-wave HetNets have better energy efficiency but with much heavier backhaul overhead.

  • Adaptive Multimedia Flow Splitting over WiMAX and WiFi Links

    Jong-Ok KIM  Toshiaki YAMAMOTO  Akira YAMAGUCHI  Sadao OBANA  

     
    PAPER

      Vol:
    E91-B No:10
      Page(s):
    3085-3094

    To meet the bandwidth requirements of multimedia services, multipath transmission is a promising solution. In this paper, we consider multi-access networks, where WiMAX and WiFi links are set up at the same time. Multipath transmission suffers from the intrinsic problem of out-of-order packet delivery. This has an adverse impact on TCP and even UDP-based delay sensitive applications. However, multimedia streaming services allow some tolerance to transmission delay. Motivated by this observation, we investigate how to split multimedia flows over heterogeneous links. Wireless link capacity varies widely over time due to dynamic radio conditions. The capacity variations should be promptly reflected in traffic splitting in order to accomplish an equal load-balance. A practical prototype system has been implemented. We have performed extensive measurements from a prototype system. Through practical experimental results, we could verify two major research goals. One is that multimedia splitting can improve the overall network performance (e.g., the permitted multimedia sessions or the aggregated bandwidth) while still keeping an acceptable media quality. The other is an adaptation capability to varying link quality. It has been widely investigated under various radio conditions and different monitoring intervals. It is shown that the adaptive technique is effective under dynamic radio environments.

  • Millimeter-Wave Wireless LAN and Its Extension toward 5G Heterogeneous Networks Open Access

    Kei SAKAGUCHI  Ehab Mahmoud MOHAMED  Hideyuki KUSANO  Makoto MIZUKAMI  Shinichi MIYAMOTO  Roya E. REZAGAH  Koji TAKINAMI  Kazuaki TAKAHASHI  Naganori SHIRAKATA  Hailan PENG  Toshiaki YAMAMOTO  Shinobu NANBA  

     
    INVITED PAPER

      Vol:
    E98-B No:10
      Page(s):
    1932-1948

    Millimeter-wave (mmw) frequency bands, especially 60GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is distributed antenna type architecture to realize centralized coordination, while the other is autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.

  • Effect of Cell Range Expansion to Handover Performance for Heterogeneous Networks in LTE-Advanced Systems

    Koichiro KITAGAWA  Toshiaki YAMAMOTO  Satoshi KONISHI  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1367-1376

    Cell Range Expansion (CRE) is a promising technique for the enhancement of traffic offload to pico cells. CRE is realized by adjusting the trigger timing of handover (HO) toward/from pico cells. However, inappropriate setting of trigger timing results in HO failures or Ping-Pong HOs. Both the HO failures and the Ping-Pong HOs degrade the continuity of user data services. Therefore, when CRE is applied, both the HO failures and the Ping-Pong HOs should be kept suppressed in order to guarantee the continuity of services for users. However, in the conventional studies, the application of CRE is discussed without consideration of HO performance. This paper clarifies the application range of CRE from the perspective of HO performance by taking the HO failure rates and the Ping-Pong HO rates as HO performance measures. As an example, we reveal that there is an appropriate CRE bias values which keep both the HO failure rate and Ping-Pong HO rate less than 1%. Such an appropriate CRE bias value range is smaller than the one without consideration of HO performance, which is reported in the conventional studies. The authors also observed that Ping-Pong HO occurs due to the short staying time of users at pico cells in high velocity environment. The rate of such Ping-Pong HOs becomes more than about 1% when the user velocity is more than 60 km/h. Therefore, it is more difficult in high velocity environment than that in low velocity environment to find appropriate CRE bias values.

  • Adaptive Traffic Route Control in QoS Provisioning for Cognitive Radio Technology with Heterogeneous Wireless Systems

    Toshiaki YAMAMOTO  Tetsuro UEDA  Sadao OBANA  

     
    PAPER-Protocols

      Vol:
    E92-B No:12
      Page(s):
    3683-3692

    As one of the dynamic spectrum access technologies, "cognitive radio technology," which aims to improve the spectrum efficiency, has been studied. In cognitive radio networks, each node recognizes radio conditions, and according to them, optimizes its wireless communication routes. Cognitive radio systems integrate the heterogeneous wireless systems not only by switching over them but also aggregating and utilizing them simultaneously. The adaptive control of switchover use and concurrent use of various wireless systems will offer a stable and flexible wireless communication. In this paper, we propose the adaptive traffic route control scheme that provides high quality of service (QoS) for cognitive radio technology, and examine the performance of the proposed scheme through the field trials and computer simulations. The results of field trials show that the adaptive route control according to the radio conditions improves the user IP throughput by more than 20% and reduce the one-way delay to less than 1/6 with the concurrent use of IEEE802.16 and IEEE802.11 wireless media. Moreover, the simulation results assuming hundreds of mobile terminals reveal that the number of users receiving the required QoS of voice over IP (VoIP) service and the total network throughput of FTP users increase by more than twice at the same time with the proposed algorithm. The proposed adaptive traffic route control scheme can enhance the performances of the cognitive radio technologies by providing the appropriate communication routes for various applications to satisfy their required QoS.