The search functionality is under construction.

Author Search Result

[Author] Xiaofeng LI(7hit)

1-7hit
  • An Area Efficient Real-Time PFFT Architecture Using Parallel Distributed Arithmetic

    Xiaofeng LING  Xinbao GONG  Xiaogang ZANG  Ronghong JIN  

     
    LETTER-Digital Signal Processing

      Vol:
    E95-A No:2
      Page(s):
    600-603

    In this letter, an area-efficient architecture for the hardware implementation of the real-time prime factor Fourier transform (PFFT) is presented. In the proposed architecture, a prime length DFT module with the one-point-per-cycle (OPPC) property is implemented by the parallel distributed arithmetic (DA), and a cyclic convolution feature is exploited to simplify the structure of the DA cells. Based on the proposed architecture, a real-time 65-point PFFT processor is designed, and the synthesis results show that it saves over 8% gates compared to the existing real-time 64-point DFT designs.

  • MSLT: A Scalable Solution for Blockchain Network Transport Layer Based on Multi-Scale Node Management Open Access

    Longle CHENG  Xiaofeng LI  Haibo TAN  He ZHAO  Bin YU  

     
    PAPER-Network

      Pubricized:
    2023/09/12
      Vol:
    E107-B No:1
      Page(s):
    185-196

    Blockchain systems rely on peer-to-peer (P2P) overlay networks to propagate transactions and blocks. The node management of P2P networks affects the overall performance and reliability of the system. The traditional structure is based on random connectivity, which is known to be an inefficient operation. Therefore, we propose MSLT, a multiscale blockchain P2P network node management method to improve transaction performance. This approach involves configuring the network to operate at multiple scales, where blockchain nodes are grouped into different ranges at each scale. To minimize redundancy and manage traffic efficiently, neighboring nodes are selected from each range based on a predetermined set of rules. Additionally, a node updating method is implemented to improve the reliability of the network. Compared with existing transmission models in efficiency, utilization, and maximum transaction throughput, the MSLT node management model improves the data transmission performance.

  • Capacity of Fading Channels with Quantized Channel Side Information

    Xiaofeng LIU  Hongwen YANG  Wenbin GUO  Dacheng YANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E89-B No:2
      Page(s):
    590-593

    In this letter, we study the capacity of fading channels with perfect channel side information (CSI) at the receiver and quantized CSI at the transmitter. We present a general algorithm for the joint design of optimal quantization and power control for maximizing the forward link capacity over flat fading channels. Numerical results for Rayleigh fading are given.

  • An Immunity-Based RBF Network and Its Application in Equalization of Nonlinear Time-Varying Channels

    Xiaogang ZANG  Xinbao GONG  Ronghong JIN  Xiaofeng LING  Bin TANG  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E92-A No:5
      Page(s):
    1390-1394

    This paper proposes a novel RBF training algorithm based on immune operations for dynamic problem solving. The algorithm takes inspiration from the dynamic nature of natural immune system and locally-tuned structure of RBF neural network. Through immune operations of vaccination and immune response, the RBF network can dynamically adapt to environments according to changes in the training set. Simulation results demonstrate that RBF equalizer based on the proposed algorithm obtains good performance in nonlinear time-varying channels.

  • 3D Objects Tracking by MapReduce GPGPU-Enhanced Particle Filter

    Jieyun ZHOU  Xiaofeng LI  Haitao CHEN  Rutong CHEN  Masayuki NUMAO  

     
    PAPER

      Pubricized:
    2015/01/21
      Vol:
    E98-D No:5
      Page(s):
    1035-1044

    Objects tracking methods have been wildly used in the field of video surveillance, motion monitoring, robotics and so on. Particle filter is one of the promising methods, but it is difficult to apply to real-time objects tracking because of its high computation cost. In order to reduce the processing cost without sacrificing the tracking quality, this paper proposes a new method for real-time 3D objects tracking, using parallelized particle filter algorithms by MapReduce architecture which is running on GPGPU. Our methods are as follows. First, we use a Kinect to get the 3D information of objects. Unlike the conventional 2D-based objects tracking, 3D objects tracking adds depth information. It can track not only from the x and y axis but also from the z axis, and the depth information can correct some errors in 2D objects tracking. Second, to solve the high computation cost problem, we use the MapReduce architecture on GPGPU to parallelize the particle filter algorithm. We implement the particle filter algorithms on GPU and evaluate the performance by actually running a program on CUDA5.5.

  • Joint Wireless Information and Energy Transfer in Two-Way Relay Channels

    Xiaofeng LING  Rui WANG  Ping WANG  Yu ZHU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/12/06
      Vol:
    E101-B No:6
      Page(s):
    1476-1484

    In this paper, we study simultaneous wireless information and power transfer (SWIPT) in two-way relay channels where two users exchange information with each other via a multi-antenna relay node. The signals forwarded by the relay node are also used to supply the power to two users. We formulate a max-min optimization problem aiming to maximize the minimum harvested energy between two users to achieve fairness. We jointly optimize the relay beamforming matrix and allocating powers at the two users subject to the quality of service (QoS) constraints. To be specific, we consider the amplify-and-forward (AF) relay strategy and the time splitting SWIPT strategy. To this end, we propose two different time splitting protocols to enable relay to supply power to two users. To solve the non-convex joint optimization problem, we propose to split the original optimization problem into two subproblems and solving them iteratively to obtain the final solution. It is shown that the first subproblem dealing with the beamforming matrix can be optimally solved by using the technique of relaxed semidefinite programming (SDR), and the second subproblem, which deals with the power allocation, can be solved via linear programming. The performance comparison of two schemes as well as the one-way relaying scheme are provided and the effectiveness of the proposed schemes is verified.

  • Improved LEACH-M Protocol for Processing Outlier Nodes in Aerial Sensor Networks

    Li TAN  Haoyu WANG  Xiaofeng LIAN  Jiaqi SHI  Minji WANG  

     
    PAPER-Network

      Pubricized:
    2020/11/05
      Vol:
    E104-B No:5
      Page(s):
    497-506

    As the nodes of AWSN (Aerial Wireless Sensor Networks) fly around, the network topology changes frequently with high energy consumption and high cluster head mortality, and some sensor nodes may fly away from the original cluster and interrupt network communication. To ensure the normal communication of the network, this paper proposes an improved LEACH-M protocol for aerial wireless sensor networks. The protocol is improved based on the traditional LEACH-M protocol and MCR protocol. A Cluster head selection method based on maximum energy and an efficient solution for outlier nodes is proposed to ensure that cluster heads can be replaced prior to their death and ensure outlier nodes re-home quickly and efficiently. The experiments show that, compared with the LEACH-M protocol and MCR protocol, the improved LEACH-M protocol performance is significantly optimized, increasing network data transmission efficiency, improving energy utilization, and extending network lifetime.