1-2hit |
Xiaoshe ZHAI Yingsan GENG Jianhua WANG Guogang ZHANG Yan WANG
This paper presents an accurate and systematic method to simulate the interference imposed on the input/output (I/O) ports of electronic equipment under the electrical fast transients/burst (EFT/B) test. The equivalent circuit of the EFT/B generator and the coupling clamp are modeled respectively. Firstly, a transfer function (TF) of the EFT pulse-forming network is constructed with the latent parameters based on circuit theory. In the TF, two negative real parameters characterize the non-oscillation process of the network while one complex conjugate pair characterizes the damping-oscillation process. The TF of the pulse-forming network is therefore synthesized in the equivalent circuit of the EFT/B generator. Secondly, the standard coupling clamp is modeled based on the scatter (S) parameter obtained by using a vector network analyzer. By applying the vector fitting method during the rational function approximation, a macromodel of the coupling clamp can be obtained and converted to a Spice compatible equivalent circuit. Based on the aforementioned procedures, the interference imposed on the I/O ports can be simulated. The modeling methods are validated experimentally, where the interference in differential mode and common mode is evaluated respectively.
Xiaoshe ZHAI Yingsan GENG Jianhua WANG Zhengxiang SONG Degui CHEN
This paper presents an accurate and systematic method to model the equivalent circuit of pulse generator in the electrical fast transients/burst test (EFT/B). Firstly, a new analytical expression is presented to express the generator's charging and discharging process under open-condition (1000-Ω), which all its coefficients are determined according to the output waveform specified by the manufacturer. And then, with adoption of the step source, the transfer function of the pulse forming network in Laplace domain is deduced, which is ready for the network synthesis. Based on above discussion, the parameterized method and the technique of constant-resistance are adopted for the network synthesis. Finally, the equivalent circuit is renormalized and improved to meet the specification under matching-condition (50-Ω). In this way, the equivalent circuit of EFT/B generator is obtained and can be adjusted conveniently to satisfy the different manufacturers. The PSPICE simulation with a certain load is validated by measurement.