The search functionality is under construction.

Author Search Result

[Author] Xiaosheng YU(10hit)

1-10hit
  • A Retinal Vessel Segmentation Network Fusing Cross-Modal Features Open Access

    Xiaosheng YU  Jianning CHI  Ming XU  

     
    LETTER-Image

      Pubricized:
    2023/11/01
      Vol:
    E107-A No:7
      Page(s):
    1071-1075

    Accurate segmentation of fundus vessel structure can effectively assist doctors in diagnosing eye diseases. In this paper, we propose a fundus blood vessel segmentation network combined with cross-modal features and verify our method on the public data set OCTA-500. Experimental results show that our method has high accuracy and robustness.

  • Indoor Localization Algorithm for TDOA Measurement in NLOS Environments

    Xiaosheng YU  Chengdong WU  Long CHENG  

     
    LETTER-Graphs and Networks

      Vol:
    E97-A No:5
      Page(s):
    1149-1152

    The complicated indoor environment such as obstacles causes the non-line of sight (NLOS) environment. In this paper, we propose a voting matrix based residual weighting (VM-Rwgh) algorithm to mitigate NLOS errors in indoor localization system. The voting matrix is employed to provide initial localization results. The residual weighting is used to improve the localization accuracy. The VM-Rwgh algorithm can overcome the effects of NLOS errors, even when more than half of the measurements contain NLOS errors. Simulation results show that the VM-Rwgh algorithm provides higher location accuracy with relatively lower computational complexity in comparison with other methods.

  • An Autoencoder Based Background Subtraction for Public Surveillance

    Yue LI  Xiaosheng YU  Haijun CAO  Ming XU  

     
    LETTER-Image

      Pubricized:
    2021/04/08
      Vol:
    E104-A No:10
      Page(s):
    1445-1449

    An autoencoder is trained to generate the background from the surveillance image by setting the training label as the shuffled input, instead of the input itself in a traditional autoencoder. Then the multi-scale features are extracted by a sparse autoencoder from the surveillance image and the corresponding background to detect foreground.

  • Saliency Detection Based Region Extraction for Pedestrian Detection System with Thermal Imageries

    Ming XU  Xiaosheng YU  Chengdong WU  Dongyue CHEN  

     
    LETTER-Image

      Vol:
    E101-A No:1
      Page(s):
    306-310

    A robust pedestrian detection approach in thermal infrared imageries for an all-day surveillance is proposed. Firstly, the candidate regions which are likely to contain pedestrians are extracted based on a saliency detection method. Then a deep convolutional network with a multi-task loss is constructed to recognize the pedestrians. The experimental results show the superiority of the proposed approach in pedestrian detection.

  • Vehicle Key Information Detection Algorithm Based on Improved SSD

    Ende WANG  Yong LI  Yuebin WANG  Peng WANG  Jinlei JIAO  Xiaosheng YU  

     
    PAPER-Intelligent Transport System

      Vol:
    E103-A No:5
      Page(s):
    769-779

    With the rapid development of technology and economy, the number of cars is increasing rapidly, which brings a series of traffic problems. To solve these traffic problems, the development of intelligent transportation systems are accelerated in many cities. While vehicles and their detailed information detection are great significance to the development of urban intelligent transportation system, the traditional vehicle detection algorithm is not satisfactory in the case of complex environment and high real-time requirement. The vehicle detection algorithm based on motion information is unable to detect the stationary vehicles in video. At present, the application of deep learning method in the task of target detection effectively improves the existing problems in traditional algorithms. However, there are few dataset for vehicles detailed information, i.e. driver, car inspection sign, copilot, plate and vehicle object, which are key information for intelligent transportation. This paper constructs a deep learning dataset containing 10,000 representative images about vehicles and their key information detection. Then, the SSD (Single Shot MultiBox Detector) target detection algorithm is improved and the improved algorithm is applied to the video surveillance system. The detection accuracy of small targets is improved by adding deconvolution modules to the detection network. The experimental results show that the proposed method can detect the vehicle, driver, car inspection sign, copilot and plate, which are vehicle key information, at the same time, and the improved algorithm in this paper has achieved better results in the accuracy and real-time performance of video surveillance than the SSD algorithm.

  • Automatic Optic Disc Boundary Extraction Based on Saliency Object Detection and Modified Local Intensity Clustering Model in Retinal Images

    Wei ZHOU  Chengdong WU  Yuan GAO  Xiaosheng YU  

     
    LETTER-Image

      Vol:
    E100-A No:9
      Page(s):
    2069-2072

    Accurate optic disc localization and segmentation are two main steps when designing automated screening systems for diabetic retinopathy. In this paper, a novel optic disc detection approach based on saliency object detection and modified local intensity clustering model is proposed. It consists of two stages: in the first stage, the saliency detection technique is introduced to the enhanced retinal image with the aim of locating the optic disc. In the second stage, the optic disc boundary is extracted by the modified Local Intensity Clustering (LIC) model with oval-shaped constrain. The performance of our proposed approach is tested on the public DIARETDB1 database. Compared to the state-of-the-art approaches, the experimental results show the advantages and effectiveness of the proposed approach.

  • Optic Disc Detection Based on Saliency Detection and Attention Convolutional Neural Networks

    Ying WANG  Xiaosheng YU  Chengdong WU  

     
    LETTER-Image

      Pubricized:
    2021/03/23
      Vol:
    E104-A No:9
      Page(s):
    1370-1374

    The automatic analysis of retinal fundus images is of great significance in large-scale ocular pathologies screening, of which optic disc (OD) location is a prerequisite step. In this paper, we propose a method based on saliency detection and attention convolutional neural network for OD detection. Firstly, the wavelet transform based saliency detection method is used to detect the OD candidate regions to the maximum extent such that the intensity, edge and texture features of the fundus images are all considered into the OD detection process. Then, the attention mechanism that can emphasize the representation of OD region is combined into the dense network. Finally, it is determined whether the detected candidate regions are OD region or non-OD region. The proposed method is implemented on DIARETDB0, DIARETDB1 and MESSIDOR datasets, the experimental results of which demonstrate its superiority and robustness.

  • Full-Automatic Optic Disc Boundary Extraction Based on Active Contour Model with Multiple Energies

    Yuan GAO  Chengdong WU  Xiaosheng YU  Wei ZHOU  Jiahui WU  

     
    LETTER-Vision

      Vol:
    E101-A No:3
      Page(s):
    658-661

    Efficient optic disc (OD) segmentation plays a significant role in retinal image analysis and retinal disease screening. In this paper, we present a full-automatic segmentation approach called double boundary extraction for the OD segmentation. The proposed approach consists of the following two stages: first, we utilize an unsupervised learning technology and statistical method based on OD boundary information to obtain the initial contour adaptively. Second, the final optic disc boundary is extracted using the proposed LSO model. The performance of the proposed method is tested on the public DIARETDB1 database and the experimental results demonstrate the effectiveness and advantage of the proposed method.

  • Segmentation of Optic Disc and Optic Cup Based on Two-Layer Level Set with Sparse Shape Prior Constraint in Fundus Images

    Siqi WANG  Ming XU  Xiaosheng YU  Chengdong WU  

     
    LETTER-Computer Graphics

      Pubricized:
    2023/01/16
      Vol:
    E106-A No:7
      Page(s):
    1020-1024

    Glaucoma is a common high-incidence eye disease. The detection of the optic cup and optic disc in fundus images is one of the important steps in the clinical diagnosis of glaucoma. However, the fundus images are generally intensity inhomogeneity, and complex organizational structure, and are disturbed by blood vessels and lesions. In order to extract the optic disc and optic cup regions more accurately, we propose a segmentation method of the optic disc and optic cup in fundus image based on distance regularized two-layer level with sparse shape prior constraint. The experimental results show that our method can segment the optic disc and optic cup region more accurately and obtain satisfactory results.

  • Saliency Detection via Absorbing Markov Chain with Multi-Level Cues

    Pengfei LV  Xiaosheng YU  Jianning CHI  Chengdong WU  

     
    LETTER-Image

      Pubricized:
    2021/12/07
      Vol:
    E105-A No:6
      Page(s):
    1010-1014

    A robust saliency detection approach for images with a complex background is proposed. The absorbing Markov chain integrating low-level, mid-level and high-level cues dynamically evolves by using the similarity between pixels to detect saliency objects. The experimental results show that the proposed algorithm has advantages in saliency detection, especially for images with a chaotic background or low contrast.