The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Ya-Shih HUANG(2hit)

1-2hit
  • TherWare: Thermal-Aware Placement and Routing Framework for 3D FPGAs with Location-Based Heat Balance

    Ya-Shih HUANG  Han-Yuan CHANG  Juinn-Dar HUANG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E98-A No:8
      Page(s):
    1796-1805

    The emerging three-dimensional (3D) technology is considered as a promising solution for achieving better performance and easier heterogeneous integration. However, the thermal issue becomes exacerbated primarily due to larger power density and longer heat dissipation paths. The thermal issue would also be critical once FPGAs step into the 3D arena. In this article, we first construct a fine-grained thermal resistive model for 3D FPGAs. We show that merely reducing the total power consumption and/or minimizing the power density in vertical direction is not enough for a thermal-aware 3D FPGA backend (placement and routing) flow. Then, we propose our thermal-aware backend flow named TherWare considering location-based heat balance. In the placement stage, TherWare not only considers power distribution of logic tiles in both lateral and vertical directions but also minimizes the interconnect power. In the routing stage, TherWare concentrates on overall power minimization and evenness of power distribution at the same time. Experimental results show that TherWare can significantly reduce the maximum temperature, the maximum temperature gradient, and the temperature deviation only at the cost of a minor increase in delay and runtime as compared with present arts.

  • Communication Synthesis for Interconnect Minimization in Multicycle Communication Architecture

    Ya-Shih HUANG  Yu-Ju HONG  Juinn-Dar HUANG  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E92-A No:12
      Page(s):
    3143-3150

    In deep-submicron technology, several state-of-the-art architectural synthesis flows have already adopted the distributed register architecture to cope with the increasing wire delay by allowing multicycle communication. In this article, we regard communication synthesis targeting a refined regular distributed register architecture, named RDR-GRS, as a problem of simultaneous data transfer routing and scheduling for global interconnect resource minimization. We also present an innovative algorithm with regard of both spatial and temporal perspectives. It features both a concentration-oriented path router gathering wire-sharable data transfers and a channel-based time scheduler resolving contentions for wires in a channel, which are in spatial and temporal domain, respectively. The experimental results show that the proposed algorithm can significantly outperform existing related works.