The search functionality is under construction.

Author Search Result

[Author] Yasuhiro KOBAYASHI(2hit)

1-2hit
  • Memory Allocation for Multi-Resolution Image Processing

    Yasuhiro KOBAYASHI  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-VLSI Systems

      Vol:
    E91-D No:10
      Page(s):
    2386-2397

    Hierarchical approaches using multi-resolution images are well-known techniques to reduce the computational amount without degrading quality. One major issue in designing image processors is to design a memory system that supports parallel access with a simple interconnection network. The complexity of the interconnection network mainly depends on memory allocation; it maps pixels onto memory modules and determines the required number of memory modules. This paper presents a memory allocation method to minimize the number of memory modules for image processing using multi-resolution images. For efficient search, the proposed method exploits the regularity of window-type image processing. A practical example demonstrates that the number of memory modules is reduced to less than 14% that of conventional methods.

  • FPGA Implementation of a Stereo Matching Processor Based on Window-Parallel-and-Pixel-Parallel Architecture

    Masanori HARIYAMA  Yasuhiro KOBAYASHI  Haruka SASAKI  Michitaka KAMEYAMA  

     
    PAPER-VLSI Architecture

      Vol:
    E88-A No:12
      Page(s):
    3516-3522

    This paper presents a processor architecture for high-speed and reliable stereo matching based on adaptive window-size control of SAD (Sum of Absolute Differences) computation. To reduce its computational complexity, SADs are computed using images divided into non-overlapping regions, and the matching result is iteratively refined by reducing a window size. Window-parallel-and-pixel-parallel architecture is also proposed to achieve to fully exploit the potential parallelism of the algorithm. The architecture also reduces the complexity of an interconnection network between memory and functional units based on the regularity of reference pixels. The stereo matching processor is implemented on an FPGA. Its performance is 80 times higher than that of a microprocessor (Pentium4@2 GHz), and is enough to generate a 3-D depth image at the video rate of 33 MHz.