The search functionality is under construction.

Author Search Result

[Author] Yoh IMAI(4hit)

1-4hit
  • Fiber-Optic Low Coherence Velocimetry by Detecting Interference Fluctuations

    Yoh IMAI  Kazuhiro TANAKA  

     
    PAPER-Distributed Sensing

      Vol:
    E83-C No:3
      Page(s):
    423-427

    A new sensing method for measuring directly flow velocity by using low coherence interference techniques is proposed and demonstrated. In this method, a temporally fluctuating signal, not the Doppler frequency shift, is detected. Theoretical analysis shows that a spectrum of light backscattered from a particle takes a Gaussian form whose width is simply proportional to the flow velocity. The measured velocity is in good agreement with the actual flow velocity derived from the flow rate. The dynamic range of this sensing method is governed by the frequency range of the FFT processor used and is estimated to be 1.4 10-4 14 m/s. The depth position can be adjusted with an accuracy of approximately 30 µm which is determined by the coherence length of the light source. The velocity distribution along the depth is easily measured by changing mechanically the length of the reference arm in the low coherence interferometer.

  • Fabrication of Polarization-Maintaining Photonic Crystal Fiber Coupler with Air Hole State Control Using CO2 Laser Irradiation Technique

    Hirohisa YOKOTA  Yusuke ITO  Hiroki KAWASHIRI  Hideyuki KIUE  Hideo TOBITA  Yoh IMAI  Yutaka SASAKI  

     
    BRIEF PAPER-Optoelectronics

      Vol:
    E95-C No:10
      Page(s):
    1689-1691

    Polarization-maintaining photonic crystal fiber couplers (PM-PCFCs) were fabricated using a CO2 laser irradiation technique. We could control the states of air holes in the tapered region of couplers by adjusting the laser power density in the fusion and the elongation processes. It was demonstrated that the air hole remaining PM-PCFC exhibited polarization-splitting characteristics and that the air hole collapsed PM-PCFC had polarization insensitive coupling characteristics.

  • The Effect of Input Azimuth of Cross-Phase-Modulated Soliton Pulses on Supercontinuum Generation in a Dispersion-Flattened/Decreasing Fiber with Low Birefringence

    Hiroyasu SONE  Masaaki IMAI  Yoh IMAI  Yasuhiro HARADA  

     
    PAPER

      Vol:
    E86-C No:5
      Page(s):
    714-718

    It is found that the supercontinuum spectrum is generated from cross-phase modulated soliton pulses which are propagated through a dispersion-flattened/decreasing fiber with low birefringence. The cross-phase modulation is achieved by exciting two orthogonally polarized modes in a birefringent fiber and the effect of input azimuth of linearly polarized pulses is discussed theoretically and numerically.

  • OFDR Diagnostics by a Phase Change Detection

    Yoh IMAI  Keigo IIZUKA  Masaaki IMAI  

     
    PAPER

      Vol:
    E75-B No:4
      Page(s):
    281-284

    A new type of optical frequency domain reflectometry is demonstrated. Optical carrier frequency is swept so that a phase of the backscattered light is shifted. Then, an interference output of the backscattered light is Fourier transformed. The farther the scattering point locates, the faster the phase of the backscattered light changes. Hence, the Fourier spectrum of the interference output displays the fault distribution along a wave-guide. In the present scheme, the theoretical resolution is inversely proportional to the frequency sweeping range of the optical source and is given by z=c/2nf, where f is the frequency sweeping range of the optical source. In a preliminary experiment, a Michelson type interferometer in which a target fiber of 20cm length is inserted in a probing arm. The reference arm is adjusted to be longer than the probing arm by about 1.8m. This is because the interference term between the backscattering light and the reference light should be separated from the interference term formed by the backscattering light itself. A LD pumped Nd: YAG ring laser whose frequency sweeping range is 20GHz is used as a variable wavelength source. The calculated resolution is 5mm for n=1.5 in fiber. A resultant spectrum in which the two peaks correspond to the reflections at both the fiber ends is obtained.