The search functionality is under construction.

Author Search Result

[Author] Yohei FUKUMIZU(3hit)

1-3hit
  • Communication Scheme for a Highly Collision-Resistive RFID System

    Yohei FUKUMIZU  Shuji OHNO  Makoto NAGATA  Kazuo TAKI  

     
    PAPER

      Vol:
    E89-A No:2
      Page(s):
    408-415

    A highly collision-resistive RFID system multiplexes communications between thousands of tags and a single reader in combination with time-domain multiplexing code division multiple access (TD-CDMA), CRC error detection, and re-transmission for error recovery. The collision probability due to a random selection of CDMA codes and TDMA channels bounds the number of IDs successfully transmitted to a reader during a limited time frame. However, theoretical analysis showed that the re-transmission greatly reduced the collision probability and that an ID error rate of 2.510-9 could be achieved when 1,000 ID tags responded within a time frame of 400 msec in ideal communication channels. The proposed collision-resistive communication scheme for a thousand multiplexed channels was modeled on a discrete-time digital expression and an FPGA-based emulator was built to evaluate a practical ID error rate under the presence of background noise in communication channels. To achieve simple anti-noise communication in a multiple-response RFID system, as well as unurged re-transmission of ID data, adjusting of correlator thresholds provides a significant improvement to the error rate. Thus, the proposed scheme does not require a reader to request ID transmission to erroneously responding tags. A reader also can lower noise influence by using correlator thresholds, since the scheme multiplexes IDs by CDMA-based communication. The effectiveness of the re-transmission was confirmed experimentally even in noisy channels, and the ID error rate derived from the emulation was 1.910-5. The emulation was useful for deriving an optimum set of RFID system parameters to be used in the design of mixed analog and digital integrated circuits for RFID communication.

  • Back-End Design of a Collision-Resistive RFID System through High-Level Modeling Approach

    Yohei FUKUMIZU  Makoto NAGATA  Kazuo TAKI  

     
    PAPER

      Vol:
    E89-C No:11
      Page(s):
    1581-1590

    A highly collision-resistive RFID system multiplexes communications between thousands of transponders and a single reader using TH-CDMA based anti-collision scheme. This paper focuses on the back-end design consideration of such an RFID system with the deployment of high-level modeling techniques, accompanying a technical comparison of physical-level description, hardware-based emulation, and software-based simulation. A new rapid-prototyping simulation system was constructed to evaluate the robustness of a multiplexed RFID link system with more than 1,000 channels in the presence of field disturbances, and the design parameters of the back-end digital signal processing that dominated anti-collision performance were explored. Finally, the derived optimum parameters were applied to the design of a back-end digital integrated circuit to be installed in collision-resistive transponder circuitry.

  • A Mixed Circuit and System Level Simulation Technique of Collision-Resistant RFID System

    Yohei FUKUMIZU  Naoki GOCHI  Makoto NAGATA  Kazuo TAKI  

     
    LETTER

      Vol:
    E90-C No:6
      Page(s):
    1299-1303

    An integrated multi-level simulation environment is developed for a highly collision-resistant RFID system. An analog/mixed-signal (AMS) simulator for a circuit-level description of analog front-end power/signal transmission through electro-magnetic coupling is concurrently connected to a tailored software simulator for system-level description of digital back-end processing of TH-CDMA based anti-collision communication. The feasibility of the RFID system in which more than 1,000 transponders can be identified by a single reader in 400 msec is successfuly explored, under a practical presence of field disturbances such as background noises in communication channels as well as variations of electro-magnetic coupling strengths for power transmission.