The search functionality is under construction.

Author Search Result

[Author] Yoneo WATANABE(3hit)

1-3hit
  • Vehicle Mobility Characterization Based on Measurements and Its Application to Cellular Communication Systems

    Takehiko KOBAYASHI  Noriteru SHINAGAWA  Yoneo WATANABE  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    2055-2060

    Future cellular communication systems will be called upon to provide multimedia services (voice, data, and video) for various user platforms (pedestrians, cars, and trains) that have a variety of mobility characteristics. Knowledge of mobility characteristics is essential for planning, designing and operating communication networks. The position data of selected vehicles (taxis) have been measured by using the Global Positioning System at 1-s intervals. Those data are used for evaluating mobility characteristics, such as probabilistic distributions of speed, cell dwell time, and cell crossover rate of vehicles, assuming that cells are hypothetically laid over the loci of the vehicles. The cell dwell time of vehicles is found to follow a lognormal distribution, rather than a conventionally-presumed negative exponential distribution. When the holding time distribution and random origination of calls along the loci are assumed, the properties of the cell dwell time and the handoff rate of terminals communicating in the hypothetical cellular systems are also estimated from the measured data.

  • Evaluation of Shared Bandwidth for Mobile Multimedia Networks Using a Diffusion Model

    Yoneo WATANABE  Noriteru SHINAGAWA  Takehiko KOBAYASHI  Masaki AIDA  

     
    LETTER

      Vol:
    E82-A No:7
      Page(s):
    1287-1291

    This letter proposes a diffusion model that considers both mobility and multimedia based on the user population process to examine the effects of multimedia in mobile communications. As an application example of this model, the shared bandwidth that can be used by one user in packet communications is evaluated. In this model, the user speed and variation in the number of users in a cell are interrelated with respect to mobility. By examining the shared bandwidth behavior based on multimedia teletraffic characteristics, assuming that the number of simultaneously-communicating users within a cell have self-similarity, we found that shared bandwidth and its variance are not dependent on self-similarity but that variance in the shared bandwidth is dependent on user speed.

  • Mobile ATM Network Using Concentrated Base Station Architecture

    Noriteru SHINAGAWA  Yoneo WATANABE  Takehiko KOBAYASHI  Keisuke NAKANO  Masakazu SENGOKU  

     
    PAPER

      Vol:
    E82-A No:7
      Page(s):
    1185-1193

    Multimedia mobile communication systems with high-speed radio transmission supported by asynchronous transfer mode (ATM) technologies have been intensively studied over the last few years. Smaller radio zones termed microcells and picocells will be used in this kind of mobile communication systems for the purpose of high-speed radio transmission. When the coverage of a radio zone is smaller, the amount of traffic per radio zone is relatively low. It is not possible to use the cable circuits connecting the switch and base stations in an efficient manner because of the lack of the scale effect of traffic. With smaller radio zones, moreover, handoff occurs frequently as a mobile station moves. The switch is required a large capacity to handle the processing of frequent handoffs. This paper proposes a mobile network architecture controlled by the concentrated grouping of base stations. A special feature of this configuration is the ability of the network's switches to efficiently accommodate numerous base stations that control small radio zones. It can also lighten the handoff control load of switches; the effect of handoff frequency reduction is evaluated with computer simulation.