The search functionality is under construction.

Author Search Result

[Author] Yoshifumi MATSUSHITA(3hit)

1-3hit
  • Routing Methodology for Minimizing Crosstalk in SoC

    Takashi YAMADA  Atsushi SAKAI  Yoshifumi MATSUSHITA  Hiroto YASUURA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E86-A No:9
      Page(s):
    2347-2356

    In this paper, we propose new physical design techniques to reduce crosstalk noise and crosstalk-induced delay variations caused in a nanometer-scale system-on-a-chip (SoC). We have almost eliminated the coupling effect between signal wires by simply optimizing parameters for the automatic place and route methodology. Our approach consists of two techniques, (1) A 3-D optimization technique for tuning the routing grid configuration both in the horizontal and vertical directions. (2) A co-optimization technique for tuning the cell utilization ratio and the routing grid simultaneously. Experiments on the design of an image processing circuit fabricated in a 0.13 µm CMOS process with six layers of copper interconnect show that crosstalk noise is almost eliminated. From the results of a static timing analysis considering the worst-case crosstalk condition, the longest path delay is decreased by about 15% maximum if technique (1) is used, and by about 7% maximum if technique (2) is used. The 7-15% delay reduction has been achieved without process improvement, and this reduction corresponds to between 1/4 and 1/2 generation of process progress.

  • Low-Power Architecture of a Digital Matched Filter for Direct-Sequence Spread-Spectrum Systems

    Takashi YAMADA  Shoji GOTO  Norihisa TAKAYAMA  Yoshifumi MATSUSHITA  Yasoo HARADA  Hiroto YASUURA  

     
    PAPER-Integrated Electronics

      Vol:
    E86-C No:1
      Page(s):
    79-88

    In wireless communication systems, low-power metrics is becoming a burdensome problem in the portable terminal design, because of portability constraints. This paper presents design architecture of a low-power Digital Matched Filter (DMF) for the direct-sequence spread-spectrum communication system such as WCDMA or wireless LAN. The proposed approach for power savings focuses on the architecture of the reception registers and the correlation-calculating unit, which dissipate the majority of the power in a DMF. The main features are asynchronous latch clock generation for the reception registers, parallelism of correlation calculation operations and bit manipulation for chip-correlation operations. A DMF is designed in compliance with the WCDMA specifications incorporating the proposed techniques, and its properties are evaluated by computer simulations at the gate level using 0.18-µm CMOS standard cell array technology. As a result, the power consumption of the proposed DMF is estimated to be 9.3 mW (@15.6 MHz, 1.6 V), which is below 40% of the power consumed by a general DMF.

  • Pre-Route Power Analysis Techniques for SoC

    Takashi YAMADA  Takeshi SAKAMOTO  Shinji FURUICHI  Mamoru MUKUNO  Yoshifumi MATSUSHITA  Hiroto YASUURA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E86-A No:3
      Page(s):
    686-692

    This paper proposes two techniques for improving the accuracy of gate-level power analysis for system-on-a-chip (SoC). (1) Creation of custom wire load models for clock nets. (2) Use of layout information (actual net capacitance and input signal transition time). The analysis time is reduced to less than one three-hundredth of the transistor-level power analysis time. Error is within 5% against a real chip, (the same level as that of the transistor-level power analysis), if technique (2) is used, and within 15% if technique (1) is used.