1-3hit |
Yuta OHWATARI Takahiro KAWAMURA Yuichi SEI Yasuyuki TAHARA Akihiko OHSUGA
In many movies, social conditions and awareness of the issues of the times are depicted in any form. Even if fantasy and science fiction are works far from reality, the character relationship does mirror the real world. Therefore, we try to understand social conditions of the real world by analyzing the movie. As a way to analyze the movies, we propose a method of estimating interpersonal relationships of the characters, using a machine learning technique called Markov Logic Network (MLN) from movie script databases on the Web. The MLN is a probabilistic logic network that can describe the relationships between characters, which are not necessarily satisfied on every line. In experiments, we confirmed that our proposed method can estimate favors between the characters in a movie with F-measure of 58.7%. Finally, by comparing the relationships with social indicators, we discussed the relevance of the movies to the real world.
Kazuhiro TASHIRO Takahiro KAWAMURA Yuichi SEI Hiroyuki NAKAGAWA Yasuyuki TAHARA Akihiko OHSUGA
The objective of this paper is to recognize and classify the poses of idols in still images on the web. The poses found in Japanese idol photos are often complicated and their classification is highly challenging. Although advances in computer vision research have made huge contributions to image recognition, it is not enough to estimate human poses accurately. We thus propose a method that refines result of human pose estimation by Pose Guide Ontology (PGO) and a set of energy functions. PGO, which we introduce in this paper, contains useful background knowledge, such as semantic hierarchies and constraints related to the positional relationship between body parts. Energy functions compute the right positions of body parts based on knowledge of the human body. Through experiments, we also refine PGO iteratively for further improvement of classification accuracy. We demonstrate pose classification into 8 classes on a dataset containing 400 idol images on the web. Result of experiments shows the efficiency of PGO and the energy functions; the F-measure of classification is 15% higher than the non-refined results. In addition to this, we confirm the validity of the energy functions.