The search functionality is under construction.

Author Search Result

[Author] Yuichiro TANAKA(2hit)

1-2hit
  • Ultrasmall: A Tiny Soft Processor Architecture with Multi-Bit Serial Datapaths for FPGAs

    Shinya TAKAMAEDA-YAMAZAKI  Hiroshi NAKATSUKA  Yuichiro TANAKA  Kenji KISE  

     
    PAPER-Architecture

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2150-2158

    Soft processors are widely used in FPGA-based embedded computing systems. For such purposes, efficiency in resource utilization is as important as high performance. This paper proposes Ultrasmall, a new soft processor architecture for FPGAs. Ultrasmall supports a subset of the MIPS-I instruction set architecture and employs an area efficient microarchitecture to reduce the use of FPGA resources. While supporting the original 32-bit ISA, Ultrasmall uses a 2-bit serial ALU for all of its operations. This approach significantly reduces the resource utilization instead of increasing the performance overheads. In addition to these device-independent optimizations, we applied several device-dependent optimizations for Xilinx Spartan-3E FPGAs using 4-input lookup tables (LUTs). Optimizations using specific primitives aggressively reduce the number of occupied slices. Our evaluation result shows that Ultrasmall occupies only 84% of the previous small soft processor. In addition to the utilized resource reduction, Ultrasmall achieves 2.9 times higher performance than the previous approach.

  • Reservoir-Based 1D Convolution: Low-Training-Cost AI Open Access

    Yuichiro TANAKA  Hakaru TAMUKOH  

     
    LETTER-Neural Networks and Bioengineering

      Pubricized:
    2023/09/11
      Vol:
    E107-A No:6
      Page(s):
    941-944

    In this study, we introduce a reservoir-based one-dimensional (1D) convolutional neural network that processes time-series data at a low computational cost, and investigate its performance and training time. Experimental results show that the proposed network consumes lower training computational costs and that it outperforms the conventional reservoir computing in a sound-classification task.