The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yuji OSAKI(3hit)

1-3hit
  • A Fully On-Chip, 6.66-kHz, 320-nA, 56ppm/°C, CMOS Relaxation Oscillator with PVT Variation Compensation Circuit

    Keishi TSUBAKI  Tetsuya HIROSE  Yuji OSAKI  Seiichiro SHIGA  Nobutaka KUROKI  Masahiro NUMA  

     
    PAPER

      Vol:
    E97-C No:6
      Page(s):
    512-518

    A fully on-chip CMOS relaxation oscillator (ROSC) with a PVT variation compensation circuit is proposed in this paper. The circuit is based on a conventional ROSC and has a distinctive feature in the compensation circuit that compensates for comparator's non-idealities caused by not only offset voltage, but also delay time. Measurement results demonstrated that the circuit can generate a stable clock frequency of 6.66kHz. The current dissipation was 320nA at 1.0-V power supply. The measured line regulation and temperature coefficient were 0.98%/V and 56ppm/°C, respectively.

  • Robust Subthreshold CMOS Digital Circuit Design with On-Chip Adaptive Supply Voltage Scaling Technique

    Yuji OSAKI  Tetsuya HIROSE  Kei MATSUMOTO  Nobutaka KUROKI  Masahiro NUMA  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:1
      Page(s):
    80-88

    A delay-compensation circuit for low-power subthreshold digital circuits is proposed. Delay in digital circuits operating in the subthreshold region of MOSFETs changes exponentially with process and temperature variations. Threshold-voltage monitoring and supply-voltage scaling techniques are adopted to mitigate such variations. The variation in the delay can be significantly reduced by monitoring the threshold voltage of a MOSFET in each LSI chip and exploiting the voltage as the supply voltage for subthreshold digital circuits. The supply voltage generated by the threshold voltage monitoring circuit can be regarded as the minimum supply voltage to meet the delay constraint. Monte Carlo SPICE simulations demonstrated that a delay-time variation can be improved from having a log-normal to having a normal distribution. A prototype in a 0.35-µm standard CMOS process showed that the exponential delay variation with temperature of the ring-oscillator frequency in the range from 0.321 to 212 kHz can remain by using compensation in the range from 5.26 to 19.2 kHz.

  • Subthreshold SRAM with Write Assist Technique Using On-Chip Threshold Voltage Monitoring Circuit

    Kei MATSUMOTO  Tetsuya HIROSE  Yuji OSAKI  Nobutaka KUROKI  Masahiro NUMA  

     
    PAPER

      Vol:
    E94-C No:6
      Page(s):
    1042-1048

    We propose a subthreshold Static Random Access Memory (SRAM) circuit architecture with improved write ability. Even though the circuits can achieve ultra-low power dissipation in subthreshold digital circuits, the performance is significantly degraded with threshold voltage variations due to the fabrication process and temperature. Because the write operation of SRAM is prone to failure due to the unbalance of threshold voltages between the nMOSFET and pMOSFET, stable operation cannot be ensured. To achieve robust write operation of SRAM, we developed a compensation technique by using an adaptive voltage scaling technique that uses an on-chip threshold voltage monitoring circuit. The monitoring circuit detects the threshold voltage of a MOSFET with the on-chip circuit configuration. By using the monitoring voltage as a supply voltage for SRAM cells, write operation can be compensated without degrading cell stability. Monte Carlo simulations demonstrated that the proposed SRAM architecture exhibits a smaller write operation failure rate and write time variation than a conventional 6T SRAM.